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Abstract. The concept of dominant interaction hamiltonians is introduced to classical planar

electron-atom scattering. Each trajectory is governed in different time intervals by two variants

of a separable approximate hamiltonian. Switching between them results in exchange of energy

between the two electrons. A second mechanism condenses the electron-electron interaction to

instants in time and leads to an exchange of energy and angular momentum among the two

electrons in form of kicks. We calculate the approximate and full classical deflection functions

and show that the latter can be interpreted in terms of the switching sequences of the approximate

one. Finally, we demonstrate that the quantum results agree better with the approximate classical

dynamical results than with the full ones.
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1. Introduction

Approximations and simplifications are the key to physical understanding and therefore

a large variety of approximations of different nature exist to date. A physical system can

be described often by a Hamiltonian, the latter is in most cases not separable permitting

only numerical solutions. To obtain them becomes unrealistically time consuming

already for a small number of degrees of freedom. Moreover, even if numerically

tractable, there is often little insight gained from the numerical solutions. The same is

partially true for the well known systematic perturbation theories.

Our concept of dominant interaction hamiltonians (DIH) aims at the formulation

of an approximation which can be solved analytically or numerically with ease, and at

the same time provides insight into the dynamics. To this end we approximate the full

hamiltonian H in different ways, Hj, j = 1, 2, . . ., valid in different regions of phase

space which are visited in the course of time by a classical trajectory of the approximate

system. Clearly, the concept requires classical dynamics to start with since it determines

the relevant Hamiltonian Hj through its local dominance in phase space. However, as

we will demonstrate, the (classical) DIH approach produces a qualitative interpretation

of the quantum dynamics of the system in terms of characteristic hamiltonian sequences

HiHjHk . . . which are classically realized through trajectories in the scattering process.

We apply the concept of DIH to planar electron-atom scattering, more specifically,

electron scattering from a He+ ion in the ground state, a problem with enough intrinsic

complexity to appreciate the qualitative picture of the dynamics which the DIH approach

supplies. On the other hand, planar scattering is simple enough so that it can be

handled quantum mechanically with a reasonable effort which enables us to gauge the

DIH concept against exact quantum results. Somewhat surprisingly, DIH provides even

a better quantitative approximation to the quantum results than the exact classical

solution.

The present work is also a logical next step in developing further our DIH concept

which we firstly have applied successfully to high harmonic generation in formulation

with one degree of freedom (Zagoya et al. 2012b, Zagoya et al. 2012a).

In the next section we introduce the DIH concept and describe its prerequisites

followed by the formulation of the specific dominant interaction hamiltonians for

electron ion scattering, using the far field separation for the interaction among the

two electrons. Section three presents the full classical results and those obtained with

DIHs in comparison. In section four we interpret the full classical dynamics with

the classification of trajectories emerging from the DIH approach and show that this

allows us to identify and characterize the prominent peak structures in the full classical

scattering cross section. Section five presents a comparison of our classical results

with quantum calculations and demonstrates how DIH can be used to understand and

approximate them. Section six concludes the paper with a summary.
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2. Dominant interaction hamiltonians

2.1. The concept

Let {Hi}i=1,...,N be a collection of hamiltonians which all approximate the true

hamiltonian H of a system in different (reasonable) ways. The hamiltonian Hj is called

dominant over a set Γj of phase space points which is defined by Γj = {γ|Hj(γ) =

maxi=1,...,N Hi(γ)}, where γ = (p, q). Hence, the phase space is partitioned according to

segments Γj with different dominant hamiltonians. We construct trajectories within Γj
according to Hamilton’s equations with the dominant hamiltonian Hj as usual,

ẋ =
∂Hj

∂p
, ṗ = −∂Hj

∂p
. (1)

If the trajectory γ(t) reaches at some time si the boundary between two segments, e.g.,

γ(si) ∈ Γ1 ∩ γ(si) ∈ Γ2, then the hamiltonian is switched for t > si from H1 to H2, a

procedure, which is repeated at all space boundaries a trajectory crosses.

This construction leads to a continuous but not necessarily differentiable trajectory,

see the sketch in Fig. 1. Each trajectory is characterized by the sequence of DIH,

([132121] in Fig. 1) which have been used to propagate it.

q

p

2

1

1

3

Figure 1. Sketch of phase space partition through DIH. A trajectory passing different DIHs in

the sequence 132121 is also sketched.
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2.2. Dominant interactions in three-body two-electron dynamics

The abstract concept becomes much easier to grasp when applied to a specific example

which will be the two electron problem with full hamiltonian

p2
1

2
+

p2
2

2
+ ZV1 + ZV2 + V12 , Vi = − 1

ri
, V12 =

1

|r1 − r2|
, (2)

where the pi are the two electron momenta and the ri the position vectors pointing from

the nucleus of charge Z to the electron positions. What leads to energy and angular

momentum exchange between the two electrons and renders the problem non-separable

is the electron-electron interaction |r1 − r2|−1.

Far field switching In the far field, i.e., when both electrons are far away from each

other, we can expand |r1−r2|−1 over the electron which is further away from the origin,

i.e., the nucleus. For r2 � r1 this gives in lowest order |r1 − r2|−1 ≈ 1/r2 which leads

to the separable hamiltonian

H1 =
p2

1

2
+

p2
2

2
− Z

r1

− (Z − 1)

r2

. (3)

The role of |r1− r2|−1 ≈ 1/r2 in this case is simply to describe that the inner electron 1

screens the nucleus for the outer electron 2. Of course, H2 also exists with the roles of

electron 1 and 2 interchanged. This approximation is also known as the Temkin-Poet

model (Temkin 1962, Poet 1978), or restricted to radial coordinates ri only, also as

the so called s-wave model (Handke et al. 1993). Here, H1 and H2 are DIH in their

respective phase space domain Γi and the switching (which consists in interchanging

r1 ↔ r2) takes place at r1 = r2.

Near field kicking So far we have not discussed the near field, i.e., the situation that

the electron-electron interaction is larger than the average electron-nuclear attraction,

F ≡
∣∣∣∣ 2V12

ZV1 + ZV2

∣∣∣∣ ≥ 1 . (4)

A little thought reveals that if we would take the corresponding separable hamiltonian

by neglecting Vi in Eq. (2) (with r = (r1 + r2)/2 and R = r2 − r1)

HNF = P2 +
p2

4
+

1

R
(5)

as a dominant one for propagation, it would immediately counteract its dominance, since

the purely repulsive interaction 1/R leads to increasing R and therefore decreasing

dominance of HNF. Moreover, an energy preserving switching from one of the Hi is

difficult to achieve. It is much easier to assume that the effect of a purely repulsive

DIH such as Eq. (5) can be concentrated to a single instant in time, where energy (and

angular momentum) is exchanged among the electrons in a kick, without changing their
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Table 1. Switching conditions of DIH for the two-electron problem with primed (unprimed)

quantities indicating variables after (before) the switch; the function F is defined in Eq. (4). Note

that total energy E = E1 + E2 and total angular momentum L = l1 + l2 are conserved.

event ’1’ ’2’

condition F = 1 r1 = r2

action p′2 − p′1 = KNF(p2 − p1) r1 ↔ r2

effect ∆li 6= 0,∆Ei 6= 0 ∆Ei 6= 0

positions and while respecting the constants of motion of the hamiltonian HNF. These

circumstances provide sufficient conditions to uniquely define the kick as sketched in

Fig. 2. The constants of motion A, defined by a vanishing Poisson bracket {A, HNF} = 0,

are given by HNF itself, the total angular momentum L = lr + lR and the linear center-

mass-momentum p. Since the kick is local at fixed distances r and R, we have in

addition that P2 =const. as well as lR =const. From the last two conditions, one

can construct a transformation matrix KNF. Since L is conserved, the motion takes

place in a plane where we take the interlectronic vector R = (X, Y ) at the kick with

tanα = Y/X. Then the matrix KNF, which transforms the vector P = (Px, Py)
† before

the kick into P′ = KNFP after the kick, can be parameterized with α as

KNF =

(
− cos 2α − sin 2α

− sin 2α cos 2α

)
=

(
−1 0

0 1

)(
cos 2α − sin(−2α)

sin(−2α) cos 2α

)
. (6)

Clearly, | detKNF| = 1, since the modulus of the momentum is conserved, P ′ = P . The

kick can be thought of as a rotation of the momentum vector by the angle −2α followed

by an inversion of the X−component, as the product form in Eq. (6) reveals. If, e.g.,

α = 0, we have R = Rx̂ such that the force −∇HNF leading to the kick acts in the

direction of x̂. Consequently, we get with Eq. (6) in this case P ′x = −Px and P ′y = Py.

Taking into account the near field interaction in form of kicks completes our DIH

formulation of two electron collision dynamics which uses for dynamical propagation

exclusively the separable hamiltonian H1 Eq. (3) and its counterpart H2. The conditions

for switching and kicks and their consequences are summarized in table 1.

3. Planar classical electron-ion scattering

3.1. Hamiltonian

For the practical implementation we restrict ourselves to total angular momentum L = 0

which reduces the degrees of freedom to the two electron-nucleus distances r1, r2 and

the angle θ between the vectors ri. The conjugate momentum pθ can be viewed as

the angular momentum of an individual electron l1 = pθ, where l2 = −pθ to ensure

L = l1 + l2 ≡ 0. The DIH hamiltonian corresponding to Eq. (3) reads

H1 =
p2

1

2
+
p2

2

2
+
p2
θ

2

(
1

r1

+
1

r2

)
− Z

r1

− (Z − 1)

r2

. (7)
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Figure 2. Schematic illustration of the near field kick between two electrons under the condition

F = 1 (Eq. (4)).

3.2. Initial conditions and the deflection function

We assume electron 1 to be bound in the ionic ground state of He+ with energy

E1 = −2au, and l1 = 0 while electron 2 is the projectile starting with energy E2

(we use atomic units if not otherwise stated).

For each classical trajectory we need to specify 6 initial conditions

(p0
1, r

0
1, p

0
2, r

0
2, p

0
θ, θ

0). We let the trajectory of the bound electron always start at its

outer turning point, i.e. p0
1 = 0, r0

1 = 1au. The projectile starts with momentum

p0
2 = −[2(E2 + 1/r0

2)]1/2 where r0
2 = 1000au+r0. Finally, p0

θ = 0 (because l1 = 0). Over-

all, this leaves two free variables (θ0, r0). Then, any probability to find a certain value

a for the variable A after scattering can be formulated in terms of deflection functions

a∗(θ0, r0) ≡ limt→∞A(t, θ0, r0) (Rost 1998),

dP

da
=

1

∆θ∆r

∫ ∆θ

0

dθ0

∫ ∆r

0

dr0δ(a− a∗(θ0, r0)) , (8)

where ∆θ = π and ∆r = (E2/8)1/2π are the ranges of the initial variables. Therefore,

the important dynamical objects are the deflection functions. They are shown in Fig. 3

for the final energy ε and the final angular momentum l of the projectile. Note that

the deflection functions are periodic in r0, since after the interval ∆r which corresponds

to the distance the projectile travels during one period (T = π/4) of motion of the

bound electron, the deflection function must repeat itself. Although the deflection

functions seem to be quite different, a closer look reveals that full and DIH dynamics

lead to similar structural details for ε∗(θ0, r0) but with different quantitative weights.

Overall, the DIH structures appear to be concentrated within a much smaller range of

initial values θ0, r0. In contrast, the DIH deflection function for the angular momentum

l∗(θ0, r0) differs qualitatively since there is no change of the initial value l = 0 for angles

θ0 > θc. The reason is that angular momentum changing kicks according to the criterion

Eq. (4) can only occur for θ < arccos[1 − 1/(2Z2)] ≈ 1/2 for Z = 2. Of course, Eq. (4)

for the kicks can be modified to increase the range of θ0 which can be changed during
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DIH dynamics. However, this leads to unphysically strong exchange of energy among

the two electrons (recall that the effect of the kick is an exchange p1 ↔ p2).
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Figure 3. Deflection functions for a collision with total energy E = 0.5 and initial energy of the

target electron of E1 = −2. Shown is ε∗(θ0, r0) where ε∗ = E2/E is the relative projectile electron

energy after the collision, (a) exact, (b) DIH dynamics and the final angular momentum l∗(θ0, r0)

of the projectile electron (c) exact, (d) DIH dynamics.

3.3. Electron energy spectrum and angular momentum distribution

From the deflection functions one easily obtains the spectra for angular momentum and

electron energy by integrating the respective deflection function over θ0, r0, see Eq. (8).

As one can see in Fig. 4a the energy spectra of full and DIH dynamics agree qualitatively

and even quantitatively for the large elastic scattering peak at ε = 5 (which correpsonds

to E2 = 2.5 = E0
2). The inelastic peak is of comparable magnitude but appears shifted

for the DIH dynamics. In contrast, the angular momentum spectrum (Fig. 4b) differs

considerably in both approaches as is already apparent from the differences in the

deflection function as discussed before.

However, as we will see later, this does not necessarily mean that the DIH

dynamics gives poorer results compared to the quantum solutions than the full classical

dynamics. Before discussing the relation to the quantum results, we come, however, to

the classification of trajectories and subsequently the entire dynamics which becomes

possible through DIH.
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Figure 4. Energy (a) and angular momentum (b) spectrum of the projectile electron under full

(solid line) and DIH (dashed) dynamics for the the same collision as in Fig. 3.

4. Classification of collision dynamics by sequences of dominant interaction

hamiltonians

The deflection functions in Fig. 3 show a rich structure and the question arises if one

can classify the different regions of initial conditions with characteristic properties of

the trajectories starting from them. The DIH dynamics offers an obvious possibility,

namely the sequence of DIH or, more precisely switches between DIH 1 and 2 (which

we label as event ’2’) and application of kicks if F = 1 (labeled subsequently as event

’1’), where energy and angular momentum is exchanged among the two electrons.

4.1. Typical DIH trajectories with switching events

We first document the switching by presenting three typical cases illustrated by the

respective trajectories.

Excitation (i.e., an inelastic collision) can be achieved by event ’2’. Excitation

corresponds classically either to an increase of energy for the (still bound) target electron

or to exchange of target and projectile electron, as it the case in Fig. 5 (quantum

mechanically, these two events cannot be distinguished). One can see in Fig. 5d that

during the approach of the projectile small amounts of angular momentum are exchanged

among the two electrons in the full dynamics while in the DIH approach the individual

electron angular momenta remain zero throughout the trajectory (Fig. 5a). The (single)

switching from H1 to H2 happens in this case very close to the nucleus and is difficult

to see. Figs. 5c,f confirm with the small changes in F (t) and ṗθ that there is no

angular momentum changing kick ’1’ involved. Consequently, the inter-electronic angle

is basically constant for DIH dynamics (Fig. 5b) which holds on average also for the full

dynamics. Only if the bound electron gets on its ellipse briefly on the other side of the

nucleus, there is a spike at θ = 0 (Fig. 5e). Overall, there is a good agreement between

full and DIH dynamics.

In Fig. 6 switching occurs twice constituting the event ’22’. These trajectories

correspond to a net excitation of the target electron which remains bound with a different

energy than at the beginning of the collision. One clearly sees the two switches where
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r1 = r2, first H1 → H2 and then back to H1. The dynamics in the angle θ is quite similar

to the event ’2’, discussed before. Again, DIH and full dynamics are quite similar.

Finally, we show in Fig. 7 a collision with an event sequence ’12’. Here, first through

dominant electron-electron interaction (F = 1), quite a bit of single electron angular

momentum is built up (see third panel). Indeed the criterion F = 1 grasps the relatively

sudden change in the angular momentum in the exact dynamics (dashed line in the

third panel) well. As one can see in the middle panel the angular momentum created

induces of course motion in the angle θ. Event ’1’ around t = 447.5 is followed by

an energy changing switch ’2’ around t = 448.5. The exact and the DIH trajectory

agree qualitatively, although not as good as in the two previous cases where no angular

momentum dynamics was involved (only events of type ’2’). This is consistent with our

observation from the deflection function and the spectrum of the angular momentum

and could be attributed to the restriction of events ’1’ in the DIH dynamics below a

critical angle θc.

4.2. Classification of dynamics using switching sequences

Overlooking all trajectories, the statistics of events is quite similar (see Fig. 8) with a

clear dominance of ’2’, ’22’ and ’12’. Classifying contributions to the electron energy

spectrum Fig. 4a according to the event sequences in Fig. 9 shows the meaning of the

sequences: the elastic peak is clearly dominated by ’22’ while the inelastic peak is

built mostly from collisions of type ’12’. Remarkably, this is not only true for the DIH

dynamics, from which the classification originates, but also applies to the full dynamics.

This means, that even, if the DIH dynamics does not produce very accurate quantitative

results, it can be used to generate a classification scheme which also applies to the full

dymamics and is suitable to interprete and distinguish different mechanisms, such as

elastic and inelastic collisions, etc.

5. Comparison to quantum results

Our final task is to assess, how the full and approximate DIH classical dynamics

performs in comparison to accurate quantum results. To this end, we have developed

a propagation scheme for the wave function on a grid in three dimensions which can

handle the singular Coulomb interactions. It is described in the appendix. Secondly,

the classical collision probabilities have been symmetrized (Rost 1995) to obtain

approximate singlet and triplet results.

We have collided quantum electron wavepackets with the bound He+ ion very

similarly to the classical collisions process and obtain as a result the spectrum in Fig. 10.

One sees that the elastic collision peak (ε = 5) is roughly at the same position in quantum

and classical calculations (Fig. 10a). The quantum peak is more concentrated about the

elastic energy and therefore higher since only discrete excitation of the target electron

is possible. Such excitation implies that the continuum electron needs to loose the
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Figure 5. Typical trajectories with single inelastic energy exchange by switching DIH

hamiltonians, classified as event ’2’ in table 1, (a-c) DIH and (d-f) full classical dynamics. The

general initial conditions for the collision are the same as in Fig. 3. The specific trajectory has the

additional initial values r02 = 1000+r0 with (r0, θ0) = (0.98, 2.5) for (a-c) and (r0, θ0) = (1.12, 2.5)

for (d-f). In the left panel the trajectories of the target ((x1, y1) - black) and projectile ((x2, y2)

- red/light) electron are shown in space, the middle panel presents the radial evolution of the

trajectories r1(t) and r2(t) (upper part) as well as θ(t) (lower part, dashed) in time, while the

right panel records F (t) (solid, Eq. (4)) and ṗθ(t) (dashed).

Figure 6. Same as in Fig. 5, but for an inelastic collision with two switches, ’22’. The specific

initial conditions are (r0, θ0) = (3.15, 2.5) for (a-c) and (2.10, 2.5) for (d-f).

excitation energy. The corresponding peaks in the region ε ≤ 2 for the singlet spectrum

are not resolved due to the initial wave packet with its finite energy width but lead to

a smooth maximum in the quantum spectrum. Even higher excitation energies lead to

lower final momentum for the projectile and in this semiclassical regime quantum and

classical spectra come together.
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Figure 7. Same as in Fig. 5, but for a collision sequence, ’12’. The specific initial conditions are

(r0, θ0) = (3.15, 0.2) for (a-c) and (3.15, 0.2) for (d-f).

1 11 12 112 121 122 1212 1221 2121 2112 221 212 211 22 21 2
sequence
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0.8

1.0

P
(s
eq

u
en

ce
)

Figure 8. Classfication of trajectories according to sequences of events ’1’ and ’2’ (see table 1)

for DIH (dark) and full (white) dynamics.

Similar considerations for the angular momentum spectrum require a discretization

of the continuous classical angular momentum which can be done by binning (Leopold

& Percival 1978). The comparison shown in Fig. 10b reveals that the symmetrized DIH

result is in better quantitative agreement with the quantum spectrum, in particular for

the triplet symmetry, than the full classical calculation. This may be attributed to the

fact that the quantum triplet dynamics is less reactive than the singlet dynamics due

to a symmetry enforced nodal line at r1 = r2. Classically, this effect is resembled to

a certain degree by the DIH dynamics compared to the full classical dynamics since in

the former “reactivity” is limited to the events ’1’ and ’2’, discrete in time.
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Figure 9. Energy spectrum from Fig. 4a with contributions shaded according to their event

sequences (see table 1), (a) for DIH dynamics (b) for full classical dynamics, for details, see text.
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Figure 10. Spectra of the projectile electron after the collision with parameter as in Fig. 3

in singlet/triplet symmetry (solid/dashed). The different curves provide the quantum result

(thick/black), the classical full trajectory result (thin/white) and the classical DIH result (red).

Part (a) gives the (continuous) energy spectrum, part (b) the binned distribution of final angular

momentum of the projectile electron.

6. Summary

We have introduced the concept of dominant interaction hamiltonians which

approximates dynamics described by a complicated, non-separable classical hamiltonian

with different simplified hamiltonians. Each of them is valid in a specific phase space

volume where it dominates all other simplified hamiltonians formulated. Applied

to planar electron-ion scattering, we have demonstrated that the DIH approach

provides a good approximation to the full classical dynamics. More importantly,

and somewhat surprisingly, quantum results regarding differential spectra (energy and

angular momentum of the projectile) agree better with the DIH result than with

the full classical dynamics. Whether this is accidental or systematic will have to

be investigated in future studies. A second appealing aspect of the DIH concept is

the qualitative picture it generates for the dynamics through the sequence of DIH

hamiltonians passed by trajectories. We could show that prominent peaks in the

quantum mechanical differential energy spectrum can be associated and therefore

interpreted with characteristic DIH sequences. This opens the way to classify and

understand complicated dynamics through DIHs. For further quantitative improvement
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of DIH the next natural step will be the formulation of a semiclassical extension of DIH.

Appendix A.

Numerical propagation of singular hamiltonians for three degrees of freedom

In this section we give a detailed account of the propagation scheme used to numerically

solve the time-dependent Schroedinger equation (TDSE) for the two-electron problem

in section 5. Applying the infinite-nucleus approximation and restricting ourselves to

the case of zero total angular momentum, the number of degrees of freedom reduces to

three and the corresponding hamiltonian in coordinate representation is (cf. Eq. (7))

H = −1

2

∂2

∂r2
1

− 1

2

∂2

∂r2
2

− 1

2

(
1

r2
1

+
1

r2
2

)
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ V (r1, r2, θ) , (A.1)

with the potential

V (r1, r2, θ) = −Z
r1

− Z

r2

+
1√

r2
1 + r2

2 − 2r1r2 cos θ
. (A.2)

This system has been treated with a finite-difference method in (Zhang et al. 1994), our

approach presented here uses a spectral method.

Algorithm

For the direct numerical integration of the TDSE we use the script language xmds

(www.xmds.org) which offers a variety of algorithms for solving partial differential

equations. As the wavefunction ψ is represented on a discretized grid in the coordinates

(r1, r2, θ), the partial derivatives with respect to all three spacial variables are evaluated

by means of fast-Fourier transform (FFT). For the evolution in time we employ an

explicit 8th/9th order Runge-Kutta method with an adaptive time step, enabling us to

put an upper limit of 10−8 for the relative error per timestep. Furthermore, xmds allows

for an easy parallelization of the simulation. A detailed description of the algorithm can

be found in the documentation of xmds (Cochrane et al. 2008).

Definition of the grid

The crucial step is to define a suitable grid in the coordinates (r1, r2, θ), thereby

accounting for the singularities of the hamiltonian of Eq. (A.1) at ri = 0 and sin θ = 0,

the boundary conditions for the wavefunction, and the long-range character of the

Coulomb interaction, which is especially important in electron-atom scattering.

In each coordinate x, where x = r1, r2 or θ, the grid consists of Nx points which are

distributed equidistantly (due to FFT) over the interval [xmin, xmax]. The positions follow

from arranging the singularity just between two grid points, which allows a treatment

of the full Coulomb potential.
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Since the algorithm requires periodic boundary conditions, we define the

wavefunction in each coordinate in an interval [−Lx, Lx] according to

ψ(−θ) = ψ(θ), θ > 0, (A.3a)

ψ(−r1,2) = −ψ(r1,2), r1,2 > 0, (A.3b)

where the second equation guarantees the additional boundary condition ψ(r1,2 = 0) =

0. However, this implies that ψ(r1,2 → Lr1,2) = 0, so that Lr1,2 has to be chosen large

enough, especially in a scattering experiment.

In order to achieve a higher grid point density near the Coulomb singularity we

employ a transformation of the radial coordinates according to (Fattal et al. 1996)

r1,2 = q1,2 − c0 arctan(c1q1,2), (A.4)

with coefficients c0, and c1, so that the radial grid (and thus the TDSE) has to be

formulated with respect to the coordinates q1,2. The parameters for the grid in the

coordinates (r1, r2, θ) using Eq. (A.4) are chosen as follows:

Nθ = 16, Lθ = π, Nq1 = Nq2 = 256, Lq1 = Lq2 = 125 a.u., c0 = 18.0, c1 = 0.05.

(A.5)

Numerical tests

As a test for the algorithm and the choice of our grid defined in Eq. (A.5), we numerically

calculate the spectrum σ(E) for different hamiltonians by Fourier transform of the

correlation function c(t) (Tannor 2007):

σ(E) ∼
∫

dt eiEtc(t), (A.6)

where c(t) =
∫

dxψ(x, 0)∗ψ(x, t) with the wavefunction ψ(x, t) at time t.

Angular grid

For the evaluation of the angular grid we look at the angular part of the kinetic energy

in Eq. (A.1):

Hθ = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
, (A.7)

which resembles an angular momentum operator with eigenvalues l(l+ 1). Propagation

of the initial wavepacket

ψ(θ, 0) = e−4(θ−π)2 (A.8)

for a time of t = 200 a.u. yields the spectrum shown in Fig.A1.

The peaks reproduce the five lowest eigenenergies of Eq. (A.7), which means

that the dynamics in the coordinate θ is well described at least for moderate angular

momenta.
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Figure A1. Spectrum σ(E) of the hamiltonian Eq. (A.7) obtained through numerical integration

of the TDSE for t = 200 a.u. with the initial wave packet of Eq. (A.8) and Nθ = 16 grid points.

Radial grid

For the electron-He+ scattering in section 5, the target electron is prepared in the ground

state while the influence of the projectile electron is neglected initially. Therefore, we

examine the radial component of the hydrogen problem, described by the hamiltonian

Hr = −1

2

∂2

∂r2
− 2

r
, (A.9)

to check if the radial grid can account for the bound motion near the nucleus.

Propagation of the initial wavepacket

ψ(r, 0) = re−r
2

(A.10)

for a time of t = 10000 a.u. yields the spectrum shown in Fig. A2. There are distinct
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Figure A2. Spectrum σ(E) of hamiltonian Eq. (A.9) obtained through numerical integration

of the TDSE for t = 10000 a.u. with initial wave packet of Eq. (A.10). The radial grid was

transformed according to Eq. (A.4) with parameters from Eq. (A.5).

peaks at energies E = −2.02, −0.502, −0.224, −0.128, −0.081 a.u., which correspond

to the five lowest eigenenergies −2/n2 of Eq. (A.9) with a relative error of < 10−2.

The difference in the amplitude of the peaks is due to the smaller overlap of the initial
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wavepacket with higher excited eigenstates, which accounts for the fact that only four

peaks are visible in Fig. A2. This result shows that the radial grid enables us to describe

the dynamics of the bound electron to a sufficient degree.

Full grid

Finally, we calculate the spectrum of the two-electron hamiltonian of Eq. (A.1) with all

three degrees of freedom (r1, r2, θ). Propagation of the initial wavepacket

ψ(r1, r2, θ, 0) = r1r2e
−r21−r22−(θ−π)2 (A.11)

for a time of t = 200 a.u. yields the spectrum shown in Fig.A3.
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Figure A3. Spectrum σ(E) of Eq. (A.1) obtained through numerical integration of the TDSE

for t = 200 a.u. with initial wave packet of Eq. (A.11) and the grid parameters according to Eq.

(A.5).

A distinct peak is visible at an energy of E = −2.935 a.u. close to the accurate value

for the ground state energy of the helium atom, E0 = −2.90372 a.u. (Pekeris 1962), with

a relative error of 10−2. In addition, a second peak with an energy of E = −2.17 a.u.

can be identified, which is within 1% error consistent with the energy of the first excited

state, E(1s2s) 1S = −2.14 a.u. (Pekeris 1962). Further peaks of the spectrum are not

visible, due to the fact that the initial state of Eq. (A.11) has small overlap with the

respective eigenstates.

Hence, the crucial spectral features of the helium atom, the ground state energy

and the energy gap to the first excited state, are described with sufficient accuracy to

perform reliable scattering calculations with the method described.
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