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Abstract
In this paper, we combine statistical analysis of written texts and simple sto-
chastic models to explain the appearance of scaling laws in the statistics of word
frequencies. The average vocabulary of an ensemble of fixed-length texts is
known to scale sublinearly with the total number of words (Heaps’ law). Ana-
lyzing the fluctuations around this average in three large databases (Google-
ngram, English Wikipedia, and a collection of scientific articles), we find that the
standard deviation scales linearly with the average (Taylorʼs law), in contrast to
the prediction of decaying fluctuations obtained using simple sampling argu-
ments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage
of words using a Poisson process with a fat-tailed distribution of word fre-
quencies (Zipfʼs law) and topic-dependent frequencies of individual words (as in
topic models). Considering topical variations lead to quenched averages, turn the
vocabulary size a non-self-averaging quantity, and explain the empirical
observations. For the numerous practical applications relying on estimations of
vocabulary size, our results show that uncertainties remain large even for long
texts. We show how to account for these uncertainties in measurements of
lexical richness of texts with different lengths.
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1. Introduction

Fat-tailed distributions [1–3], allometric scaling [4, 5], and fluctuation scaling [6–8] are the
most prominent examples of scaling laws appearing in complex systems. Statistics of words in
written texts provide some of the best studied examples: the fat-tailed distribution of word
frequencies (Zipfʼs law) [9] and the sublinear growth (as in allometric scalings) of the number
of distinct words as a function of database size (Heaps’ law) [10, 11]. The connection between
these two scalings has been known at least since Mandelbrot [12] and has been further
investigated in recent years [13–15], especially for large databases [16], finite text sizes
[17, 18], and more general distributions [19, 20]. In this paper, we report the existence of a third
type of scaling in the statistics of words: fluctuation scaling. This scaling appears when
investigating the fluctuations around the Heaps’ law, i.e., the variance of the vocabulary over
different texts of the same size scales with the average. We show that this scaling results from
topical aspects of written text that are ignored in the usual connection between Zipfʼs and
Heaps’ law.

The importance of looking at the fluctuations around Heaps’ law is that this law is used in
different applications [21], e.g., (i) to optimize the memory allocation in inverse indexing
algorithms [22]; (ii) to estimate the vocabulary of a language [23, 24]; and (iii) to compare the
vocabulary richness of documents with different lengths [25–27]. Beyond linguistic
applications, scalings of the number of unique items as a function of database size similar to
Heaps’ law have been observed in other domains, e.g. the species-area relationship in ecology
[28, 29], collaborative tagging [30], network growth [31], and in the statistics of chess moves
[32]. These scaling laws have been analyzed from the general viewpoint of innovation
dynamics [33] and sampling problems [34]. Our results allow for the quantification of
uncertainties in the estimation of these scaling laws and lead to a rethinking of the statistical
significance of previous findings.

We use as databases three different collections of texts: (i) all articles of the English
Wikipedia [35], (ii) all articles published in the journal PlosOne [36], and (iii) the Google-
ngram database [23], a collection of books published in 1520–2008 (each year is treated as a
separate document). See appendix A for details on the data.

The manuscript is divided as follows. Section 2 reports our empirical findings with focus
on the deviations from a Poisson null model. Section 3 shows how these deviations can be
explained by including topicality, which plays the role of a quenched disorder and leads to a
non-self averaging process. The consequences of our findings to applications, e.g. vocabulary
richness, are discussed in section 4. Finally, section 5 summarizes our main results.

2. Empirical scaling laws

The most-prominent scaling in language is Zipfʼs law [9], which states that the frequency, F, of
the rth most frequent word (i.e., the fraction of times it occurs in the database) scales as

∝ ≫α−F r rfor 1. (1)r

Another well-studied scaling in language concerns the vocabulary growth and is known as
Heaps’ law [10, 11]. It states that the number of different words, N, scales sublinearly with the
total number of words, M, i.e.
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∝ ≫λN M M M( ) for 1, (2)

with λ< <0 1. As a third case, we consider here the problem of the vocabulary growth for an
ensemble of texts, and study the scaling of fluctuations by looking at the relation between the
standard deviation, σ =M N M( ) [ ( )] , and the mean value, μ =M N M( ) [ ( )], computed
over the ensemble of texts with the same textlength M. In other systems, Taylorʼs law [6]

σ μ μ∝ ≫βM M M( ) ( ) for ( ) 1 (3)

with β⩽ ⩽1 2 1 is typically observed [8].
The connection between scalings (1) and (2) (Zipfʼs and Heaps’ law) can be revealed

assuming the usage of each word r is governed by an independent Poisson process with a given
frequency Fr. In this description, the number of different words, N, becomes a stochastic
variable for which we can calculate the expectation value  N M[ ( )] and the variance  N M[ ( )]
over the realizations of the Poisson process (see appendix B for details)

 ∑μ≡ = − −N M M[ ( )] ( ) 1 e , (4)
r

MFr

⎡⎣ ⎤⎦   ∑σ≡ ≡ − = −− −N M M N M N M[ ( )] ( ) ( ) [ ( )] e e . (5)
r

MF MF2 2 2 2r r

Assuming Zipfʼs law (1), for ≫M 1 we recover Heaps’ law (2), i.e.,  ∝ λN M M[ ( )] , with a
simple relation between the scaling exponents α λ= −1 [37] and Taylorʼs law (3) with β = 1 2.

In figure 1, we show empirical data of real texts for the scaling relations (1)–(3) and
compare them with predictions from the Poisson null model in equations (4), (5). The Poisson
null model correctly elucidates the connection between the scaling exponents in Zipfʼs and
Heaps’ law, but it suffers from two severe drawbacks. First, it is of limited use for a quantitative
prediction of the vocabulary size for individual articles as it systematically overestimates its
magnitude, see figures 1(b), (e) and (h). Second, it dramatically underestimates the expected
fluctuations of the vocabulary size, yielding a qualitatively different behavior in the fluctuation
scaling: whereas the Poisson null model yields an exponent β ≈ 1 2 expected from central-
limit-theorem-like convergence [8], the three empirical data (figures 1(c), (f) and (i)) exhibit a
scaling with β ≈ 1. This implies that relative fluctuations of N around its mean value μ for fixed
M do not decrease with larger text size (the vocabulary growth, N(M), is a non-self-averaging
quantity) and remain of the order of the expected value. Indeed, we find that in all three
databases

σ μ≈M M( ) 0.1 ( ). (6)

Instead of looking at a single value (N, M) for each document, as described previously, an
alternative approach is to count the number of different words, N, in the first M words of the
document. This leads to a curve N(M) for = …M M1, 2, , max , where Mmax is the length of the
document. This alternative approach was employed in figures 1(e) and (f) and leads to results
equivalent to the ones obtained using single values (N, M), i.e., the μ M( ) and σ M( ) obtained
over different texts lead to identical Heaps’ and Taylorʼs laws. In figure 1(f), we show that
anomalous fluctuation scaling in the vocabulary growth is preserved if shuffling the word order
of individual texts. This illustrates that in contrast to usual explanations of fluctuation scaling in
terms of long-range correlations in time-series [8], here, the observed deviations from the
Poisson null model are mainly due to fluctuations across different texts.
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Figure 1. Scaling of Zipfʼs law (1), Heaps’ law (2), and fluctuation scaling (3). Each
row corresponds to one of the three databases used in our work. (a,d,g) Zipfʼs law: rank-
frequency distribution Fr considering the full database (the double power-law nature of
the curves is apparent [19]). (b,e,h) Heaps’ law: the number of different words, N, as a
function of textlength, M, for each individual article in the corresponding database
(black dots). (c,f,i) Fluctuation scaling: standard deviation, σ M( ), as a function of the
mean, μ M( ), for the vocabulary N(M) conditioned on the textlength M. Poisson (blue-
solid) shows the expectation from the Poisson null model, equations (4) and (5),
assuming the empirical rank-frequency distribution from (a,d,g), respectively. (Data:
μ σ, ) (yellow-solid) shows the mean, μ M( ), and standard deviation, σ M( ), of the data
N(M) within a running window in M (see appendix A for the details on the procedure).
Additionally, (e,f) show the results (Data: μ σ, ) obtained after shuffling the word order
for each individual article (thin green-solid). The fact that this curve is indistinguishable
from the original curve shows that the results are not due to temporal correlations within
the text. For comparison, we show in (c,f,i) the scalings σ μ∝M M( ) ( )1 2 and
σ μ∝M M( ) ( ) (dashed).
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In the following, we argue that these observations can be accounted for by considering
topical aspects of written language, i.e., instead of treating word frequencies as fixed, we will
consider them to be topic dependent ( ↦F F (topic)r r ).

3. Topicality in vocabulary growth

3.1. Topicality

The frequency of an individual word varies significantly across different texts, meaning that its
usage cannot be described alone by a single global frequency [38–40]. For example, consider
the usage of the (topical) word ‘network’ in all articles published in the journal PlosOne. It has
an overall rank =r* 428 and a global frequency, ≈ ×=

−F 2.9 10r* 428
4, see figure 2(a). The

local frequency obtained from each article separately varies over more than one decade, see
figure 2(b). Note that, although in this case the local rank-ordering differs from document to
document, the index r still refers to the globally determined rank and is used as a unique label
for each word.

One popular approach to account for the heterogeneity in the usage of single words is topic
models [41]. The basic idea is that the variability across different documents can be explained
by the existence of (a smaller number of) topics. In the framework of a generative model, it
assumes (i) that individual documents are composed of a mixture of topics (indexed by

=t T1,.., ), with each topic represented in an individual document by the probabilities
=P t(topic )doc and (ii) that the frequency of each word is topic dependent, i.e., =F t(topic )r ,

which leads to a different effective frequency in each document, = ∑ =F P t F t( ) ( )r t
T

r,doc 1 doc .
One particularly popular variant of topic models is Latent Dirichlet Allocation (LDA) [42],
which assumes that the topic composition P (topic)doc of each document is drawn from a

0

Figure 2. Variation of frequencies due to topicality in the PlosOne database. (a) Rank-
frequency distribution considering the complete database. The word ‘network’ (dotted line)
has ≈ ×=

−F 2.9 10*r 428
4. (b) Distribution P F( )*r of the local frequency F *r obtained

from each article separately for the word ‘network’ with the global frequency from (a)
(dotted). (c) Topic-dependent frequencies F (topic)*r inferred from LDA with T = 20
topics for the word ‘network’ with global frequency from (a) as comparison (dotted). (d)
One realization for the topic composition of a single document, P (topics)doc , drawn from a
Dirichlet distribution. For this realization, the effective frequency is

= ∑ ≈ ×=
−F P t F t( ) ( ) 2.0 10r t

T
r,doc 1 doc

4 and is shown in (b) (solid).
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Dirichlet distribution, PDir, such that only a few topics contribute substantially to each
document. Given a database of documents, LDA infers the topic-dependent frequencies,
F (topic)r , from numerical maximization of the posterior likelihood of the generative model [43].
As an illustration, in figure 2(c), we show F (topic)r* obtained using LDA for the word
‘network’ in the PlosOne database. As expected from a meaningful topic model, we see that the
conditional frequencies vary over many orders of magnitude, and that the global frequency Fr*

is governed by few topics. The advantage of LDA is that, instead of measuring the distribution
of frequencies of each individual word (or two-point distributions for assessing correlations)
over different documents, it estimates the frequency of individual words for a finite (and small)
number of topics. In combination with the generative model (e.g., drawing P (topic)doc from a
Dirichlet distribution), this not only yields a more compact description of topicality by
dramatically reducing the number of parameters, but also allows for an easy extrapolation to
unseen texts from a small training sample [42].

3.2. General treatment

In this section, we show how topicality can be included in the analysis of the vocabulary
growth. The simplest approach is to consider again that the usage of each word is governed by
Poisson processes, but this time to consider that frequencies are not fixed but are themselves
random variables that vary across texts.

In this setting, the random variable representing the vocabulary size, N, for a text of length
M can be written as

⎡⎣ ⎤⎦∑= ( )N M I n M F( ) , , (7)
r

r r

in which nr is the integer number of times the word r occurs in a Poisson process of length M
with frequency Fr and I x[ ] is an indicator-type function, i.e., = =I x[ 0] 0 and ⩾ =I x[ 1] 1.
The calculation of the expectation value now consists of two parts: (i) the average over
realizations i of the Poisson processes n M F( , )r

i
r

j( ) ( ) for a given realization j of the set of
frequencies Fr

j( ) and (ii) the average overall possible realizations j of the sets of frequencies Fr
j( )

(which vary due to topicality). In this framework, expectation values correspond to quenched
averages (denoted by subscript q)

⎡⎣ ⎤⎦ ∑ ∑= = = − −( )N M N M I n M F[ ( )] ( ) , 1 e , (8)q
i j

i j
r

r
i

r
j

i j
r

MF

j

( , )
,

( ) ( )

,

r
j( )

where we used

⎡⎣ ⎤⎦ = − = = − −( ) ( )I n M F P n M F, 1 0; , 1 e . (9)r
i

r
j

i
r r

j MF( ) ( ) ( ) r
j( )

The last equation corresponds to the probability of word r not occurring for a Poisson process of
duration M with frequency Fr

j( ) , as in equation (4). For simplicity, hereafter … ≡ … j (the
average over realizations of sets of frequencies Fr

j( ) ).
Using the inequality between arithmetic and geometric mean

= ⩽ =x xe e , (10)x xln
geometric arithmetic

ln
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we obtain that

 ∑ ∑= − ⩽ − ≡− −N M N M[ ( )] 1 e 1 e [ ( )]. (11)q

r

MF

r

M F
a

r r

The right-hand side corresponds to the result of the Poisson null model (with fixed = 〈 〉F Fr r ),
see equation (4), and can be interpreted as an annealed average (denoted by subscript a). This
implies that the heterogeneous dissemination of words across different texts leads to a reduction
of the expected size of the vocabulary, in agreement with the first deviation of the Poisson null
model reported in figures 1(b), (e) and (h).

For the quenched variance, we obtain (see appendix C)

⎡⎣ ⎤⎦  ≡ −N M N M N M[ ( )] ( ) [ ( )] (12)q q q
2 2

⎡⎣ ⎤⎦∑ ∑∑= − +− −

′≠

− − ′e e e eCov , (13)
r

MF MF

r r r

MF MF2
r r r r

where ≡ 〈 〉 − 〈 〉〈 〉− − − − − −′ ′ ′Cov[e , e ] e e e eMF MF MF MF MF MFr r r r r r . Comparing to the Poisson case in
equation (5), we see that the quenched average yields an additional term containing the
correlations of different words. In general, this term does not vanish and is responsible for the
anomalous fluctuation scaling with β = 1 observed in real text, explaining the second deviation
from the Poisson null model reported in figures 1(c), (f) and (i).

3.3. Specific ensembles

In this section, we compute the general results from equation (8), (13) for particular ensembles
of frequencies Fr

j( ) and compare them to the empirical results. In the absence of a generally
accepted parametric formulation of such an ensemble, we propose two nonparametric
approaches explained in the following.

In the first approach, we construct the ensemble Fr
j( ) directly from the collection of

documents, i.e., the frequency Fr
j( ) corresponds to the frequency of word r in document j, such

that

∑=−

=

−
D

e
1

e , (14)MF

j

D
MF

1

r r
j( )

where D is the number of documents in the data, see figure 2(b).
In the second approach, we construct the ensemble from the LDA topic model [42], in

which = =F F j(topic )r
j

r
( ) corresponds to the frequency of word r conditional on the topic

= …j T1, , , see figures 2(c) and (d). In this particular formulation, each document is assumed
to consist of a composition of topics, P (topic)doc , which is drawn from a Dirichlet distribution,
such that we get for the quenched average

∫ θ θ α= θ− −Pe d ( )e , (15)MF MF
Dir

( )r r

in which θ θ θ= …( , , )T1 are the probabilities of each topic, θ θ= ∑ ==F F j( ) (topic )r j
T

j r1 , and
the integral is over a T-dimensional Dirichlet-distribution θ αP ( | )Dir with concentration
parameter α. We infer the F (topic)r using Gensim [43] for LDA with T = 100 topics.

The results from both approaches are compared to the PlosOne database in figure 3.
Figure 3(a) shows that both methods lead to a reduction in the mean number of different words.
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Whereas the direct ensemble, equation (14), almost perfectly matches the curve of the data, the
LDA-ensemble, equation (15), still overestimates the mean number of different words in the
data. This is not surprising because, due to the fewer number of topics (when compared to the
number of documents), it constitutes a much more coarse-grained description than the direct
ensemble. Additionally, the LDA-ensemble relies on a number of ad-hoc assumptions, e.g., the
Dirichlet-distribution in equation (15) or the particular choice of parameters in the inference
algorithm, which were not optimized here. More importantly, both methods correctly account
for the anomalous fluctuation scaling with β = 1 observed in the real data, see figure 3(b), and
even yield a similar proportionality factor in the quantitative agreement with the data. The
comparison of the individual contributions to the fluctuations, equation (13), shown in the inset
of figure 3(b) shows that the anomalous fluctuation scaling is due to correlations in the co-
occurrence of different words (contained in the term − − ′Cov[e , e ]MF MFr r ).

4. Applications

4.1. Adding texts

In thermodynamic terms, Heaps’ law (as other allometric scalings) implies that the vocabulary
size is neither extensive nor intensive ( < <N M N M N M( ) (2 ) 2 ( ), also for → ∞M ).
Although this can be seen as a direct consequence of Zipfʼs law, our results show that Heaps’
law depends also sensitively on the fluctuations of the frequency of specific words across
different documents. To illustrate this, consider the problem of doubling the size of a text of size
M. This can be done either by simply extending the size of the same text up to size M2

Figure 3. Vocabulary growth for specific topic models. (a) Average vocabulary growth
and (b) fluctuation scaling in the PlosOne database (Data) and in the calculations from
equations (8), (13) for the two topic models based on the measured frequencies in
individual articles (Real Freq) and on LDA (LDA Freq), compare equations (14), (15).
For comparison, we show the results from the Poisson null model (Poisson),
equations (4), (5), which do not consider topicality. The inset in (b) (same scale as
main figure) shows the individual contributions to the fluctuations in equation (13):
∑ 〈 〉 − 〈 〉− −e er

MF MF2r r (dotted) and ∑ ∑ ′≠
− − ′Cov[e , e ]r r r

MF MFr r (solid), illustrating that
correlations between different words lead to anomalous fluctuation scaling. The solid
lines for LDA-Freq and Real Freq in (b) show the calculations of the corresponding
topic models replacing the Poisson by multinomial usage in the derivation of
equations (8), (13) to avoid finite-size effects for μ <M( ) 100.
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(denoted by ′ =M M2 · ) or by concatenating another text of size M (denoted by ′ = ×M M2 ).
The Poisson model (fixed frequency or annealed average) predicts the same expected
vocabulary for both procedures

  ∑= × = − −N M N M[ (2 · )] [ (2 )] 1 e . (16)a a

r

M F2 r

Taking fluctuations of individual frequencies across documents (quenched average) into
account yields (see appendix D for details)

 ∑ ∑= − × = −− −N M N M[ (2 · )] 1 e and [ (2 )] 1 e . (17)q

r

MF
q

r

MF2 2
r r

Using equation (10) and the fact that 〈 〉 ⩾x x2 2, we obtain the following general result

   ⩽ × ⩽ × =N M N M N M N M[ (2 · )] [ (2 )] [ (2 )] [ (2 · )]. (18)q q a a

This is consistent with the intuition that the concatenation of different texts (e.g., on different
topics) leads to larger vocabulary than a single longer text. The preceding calculations remain
true if the text is extended by a factor k (instead of 2), even for → ∞k .

The fluctuations around the mean show a more interesting behavior, as revealed by
repeating the preceding calculations for the variance. We consider the case of k texts each of
length M, such that ′ = ×M k M , and focus on the terms containing correlations between
different words shown to be responsible for the anomalous fluctuation scaling (see appendix D
for details):

 ∑× ∼ −
′

− − − −′ ′N k M[ ( )] e e e e . (19)q

r r

MF MF k MF k MF k

,

r r r r

The individual terms can be written as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑=

′

− − −

…

′e e e , (20)
r r

MF MF k

r

MkF

j j
,

¯
2

, ,

r r r
k

k

( )

1

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

∑ ∑=
′

− − −

…

′e e e , (21)
r r

MF k MF k

r

MkF

j j,

¯

, ,

2

r r r
k

k

( )

1

in which 〈 〉 …· j j, , k1
denotes the averaging over the realizations …j j( , , )k1 of frequencies Fr

j( )i in

each single text = …i k1, , and = ∑ =F Fr̄
k

k i
k

r
j( ) 1

1
( )i is the k-sample average frequency based on

the realizations …j j( , , )k1 . In the limit → ∞k : →F Fr̄
k

r
( ) such that

∑ − →
′

− − − −′ ′e e e e 0 (22)
r r

MF MF k MF k MF k

,

r r r r

for → ∞k . This implies that, for ≫k 1, (adding many different texts) the fluctuations in the
vocabulary across documents (and therefore the correlations between different words) vanish
and normal fluctuation scaling (β = 1 2) is recovered. This prediction can be tested in data.
Starting from a collection of documents, we create a new collection by concatenating k
randomly selected documents (each document is used once). We then compute for each

9
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concatenated document the number of distinct words N up to size M for increasing M,
 N M[ ( )], and  N M[ ( )]. We observe a transition of the exponent β in the fluctuation scaling,
equation (3), from β β≈ → ≈1 1 2.

4.2. Vocabulary richness

When measuring vocabulary richness, we want a measure that is robust to different text sizes.
The traditional approach is to use Herdanʼs C, i.e., =C N Mlog log [25–27]. Although quite
effective for rough estimations, this approach has several problems. An obvious problem is that
it does not incorporate any deviations from the original Heaps’ law (e.g., the double scaling
regime [19]). More seriously, it does not provide any estimation of the statistical significance or
expected fluctuations of the measure. For instance, if two values are measured for different
texts, one cannot determine whether one is significantly larger than the other. Our approach is to
compare observations with the fluctuations expected from models in the spirit of section 3.2.

The computation of statistical significance requires an estimation of the probability of
finding N different words in a text of length M, P N M( | ), which can be obtained from a given
generative model (e.g., as presented in section 3). For a text with N M( *, *), we compute the
percentile >P N N M( *| *), which allows for a ranking of texts with different sizes such that the
smaller the percentile, the richer the vocabulary. An estimation of the significance of the
difference in the vocabulary can then be obtained by comparison of the different percentile.

For the sake of simplicity, we illustrate this general approach by approximating P N M( | )
using a Gaussian distribution. In this case, the percentile are determined by the mean,

μ =M N M( ) [ ( )], and the variance, σ =M N M( ) [ ( )] , in terms of the z-score

μ
σ

= −
z

N M

M

( )

( )
, (23)N M( , )

which shows how much the measured value (N, M) deviates from the expected value μ M( ) in
units of standard deviations (z N M( , ) follows a standard normal distribution: ∼z (0, 1)

d
). If we

consider our quantitative result on fluctuation scaling in the vocabulary in equation (6), i.e.,
σ μ≈M M( ) 0.1 ( ), we can calculate the z-score of the observation (N, M) as

⎛
⎝⎜

⎞
⎠⎟

μ
μ μ

≈ − = −z
N M

M

N

M

( )

0.1 ( )
10

( )
1 , (24)N M( , )

in which we need to include the expected vocabulary growth, μ M( ), from a given generative
model (e.g., Heaps’ law with two scalings [19]). We can now: (i) for a single text (N, M), assign
a value of lexical richness, the z-score z N M( , ) , considering deviations from the pure Heaps’ law
that should be included in μ M( ); (ii) given two texts N M( , )1 1 and N M( , )2 2 , compare directly
the respective z-scores z N M( , )1 1 and z N M( , )2 2 to assess which text has a higher lexical richness
independent of the difference in the textlengths; and (iii) estimate the statistical significance of
the difference in vocabulary by considering Δ = −z z z: N M N M( , ) ( , )1 1 2 2 , which is distributed

according to Δ ∼z (0, 2)
d

because ∼z (0, 1)
d

. Point (iii) implies that the difference in the
vocabulary richness of two texts is statistically significant on a 95%-confidence level if
Δ >z| | 2.77, i.e., in this case there is at most a 5% chance that the observed difference originates
from topic fluctuations. As a general rule, for two texts of approximately the same length
( μ≈N M M( ) ( )), the relative difference in the vocabulary must be larger than 27.7% to be sure
on a 95%-confidence level that the difference is not due to expected topic fluctuations.
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We illustrate this approach for the vocabulary richness of Wikipedia articles. As a proxy
for the true vocabulary richness, we measure how much the vocabulary of each article, N(M),
exceeds the average vocabulary N M( )avg with the same textlength M empirically determined
from all articles in the Wikipedia. In practice however, when assessing the vocabulary richness
of a single article, information of N M( )avg from an ensemble of texts is usually not available and
measures such as the ones described previously are needed. In figure 4, we compare the
accuracy of measures of vocabulary richness according to Herdanʼs C, figure 4(a), and the z-
score, figures 4(b) and (c). For the latter, we use equation (24) and calculate μ M( ) from Poisson
word usage by fixing Zipfʼs law and assuming Gamma-distributed word frequencies across
documents, see appendix E for details. We see in figure 4(a) that Herdanʼs C shows a strong
bias towards assigning high values of C to shorter texts: following a line with constant C, we
observe for ≳M 10 articles with a vocabulary below average, whereas for >M 1000 articles
with a vocabulary above average. A similar (weaker) bias is observed in figure 4(b) for the
calculation of the z-score for the case in which we consider deviations from the pure Heaps’ law
but treat frequencies of individual words as fixed, i.e., ignoring topicality. The z-score
calculations including topicality in figure 4(c) show that we obtain a measure of vocabulary
richness which is approximately unbiased with respect to the textlength M (contour lines are
roughly horizontal). Furthermore, in contrast to the two other measures, we correctly assign the
highest z-score to the article with the highest ratio N M N M( ) ( )avg . Altogether, this implies that
it is not only important to consider deviations from the pure Heaps’ law, but that it is crucial to
consider topicality in the form of a quenched average.

Figure 4. Measures of vocabulary richness. For 5000 randomly selected articles from
the Wikipedia database (black dots), we compute the ratio between the number of
different words N(M) and the average number of different words N M( )avg (empirically
determined from all articles with the same textlengthM). We compare the predictions of
different measures of vocabulary richness (solid lines): (a) Herdanʼs C and (b+c) z-
score, equation (24), in which we calculate the expected null model, μ M( ), according to
equation (E.5) with parameters γ = 1.77, =r̃ 7830 [19], and → ∞a (in b) or a = 0.08
(in c). The solid lines are contours corresponding to values of N(M) that yield the same
measure of vocabulary richness varying from rich (red: C = 0.98 and z = 4) to poor
(purple: C = 0.8 and = −z 4) vocabulary. The article with the richest vocabulary
according to each measure is marked by × (red).
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5. Discussion

In summary, we used large text databases to investigate the scaling between vocabulary size N
(number of different words) and database size M. Besides the usual analysis of the average
vocabulary size (Heaps’ law), we measured the standard deviation across different texts with the
same length M. We found that the relative fluctuations (standard deviation divided by the mean)
do not decay with M in contrast to simple sampling processes. We explained this observation
using a simple stochastic process (Poisson usage of words) in which we account for topical
aspects of written text, i.e., the frequency of an individual word is not treated as fixed across
different documents. This heterogeneous dissemination of words across different texts leads to a
reduction of the expected size of the vocabulary and to an increase in the variance. We have
further shown the implications of these findings by proposing a practical measure of vocabulary
richness that allows for a comparison of the vocabulary of texts with different lengths, including
the quantification of statistical significance.

Our finding of anomalous fluctuation scaling implies that the vocabulary is a non-self-
averaging quantity, meaning that the vocabulary of a single text is not representative of the
whole ensemble. Here, we emphasized that topicality can be responsible for this effect.
Although the existence of different topics is obvious for a collection of articles as broad in
content as the Wikipedia, our analysis shows that we can apply the same reasoning for the
Google-ngram data, in which case the frequency variation is measured at different times. This
offers a new perspective on language change [44]: the difference in the vocabulary from
different years can be seen as a shift in the topical content over time. Similarly, other systematic
fluctuations (e.g., across different authors or in the parameters of the Zipfʼs law) can play a
similar role as topicality.

Beyond linguistic applications, allometric scaling [4, 5] and other sublinear scalings
similar to Heaps’ law [28–33] have been observed in different complex systems. Our results
show the importance of studying fluctuations around these scalings and provide a theoretical
framework for the analysis.

Acknowledgements

We thank Diego Rybski for insightful discussion on fluctuation scaling.

Appendix A. Data

The Wikipedia database consists of the plain text of all 3, 743, 306 articles from a snapshot of
the complete English Wikipedia [35]. The PlosOne database consists of all 76, 723 articles
published in the journal PlosOne, which were accessible at the time of the data collection [36].
The Google-ngram database is a collection of printed books counting the number of times a
word appears in a given year ∈t [1520–2008] [23]. We treat the collection of all books
published in the the same year as a single document, yielding 393 observations for different t.

We apply the same filtering for each database: (i) we decapitalize each word (e.g., ‘the’
and ‘The’ are counted as the same word) and (ii) we restrict ourselves to words consisting
uniquely of letters present in the alphabet of the English language. This is meant as a
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conservative approach to minimize the influence of foreign words, numbers (e.g. prices), or
scanning problems present in the raw data (for details on the preprocessing see [19]).

Due to peculiarities of the individual databases the data (Data: μ σ, ) in figure 1, i.e., the
calculation of the curves μ M( ) and σ M( ) conditioned on the textlength M, is constructed in a
slightly different way in each case. In the Wikipedia data, we order all datapoints N(M) (of the
full article) according to textlength M and consider 1000 consecutive datapoints (in M), from
which we calculate the average value of the textlength M, and the conditional mean, μ M( ), and
variance, σ M( ), of the vocabulary N. In the PlosOne data, the length of all articles is much more
concentrated, which is why we consider the full trajectory N(M) with = …M M1, 2, , max for
each individual article. For an arbitrary value of M, we calculate μ M( ) and σ M( ) from the
ensemble of all articles with vocabulary N at the particular textlength M. In the Google-ngram
data, we impose a logarithmic binning in M such that we can calculate μ M( ) and σ M( ) from a
finite number of samples in each bin.

Appendix B. Poisson null model

The number of different words in each realization of the Poisson process is given by

⎡⎣ ⎤⎦∑= ( )N M I n M F( ) , , (B.1)
r

r r

in which nr is the integer number of times the word r occurs in a Poisson process of length M
with frequency Fr and I x[ ] is an indicator-type function, i.e., = =I x[ 0] 0 and ⩾ =I x[ 1] 1.
Averaging over realizations of the Poisson process requires the calculation of
 ≡ 〈 〉 = − −I n M F I n M[ [ ( , )]] [ ( )] 1 er r r

MFr , which is the probability that the word with rank
r appears at least once in a text of length M. Considering all words, we obtain

 ∑ ∑= = − −[ ]N M I n M[ ( )] ( ) 1 e , (B.2)
r

r

r

MFr

⎡⎣ ⎤⎦  ≡ −N M N M N M[ ( )] ( ) [ ( )] (B.3)2 2

∑ ∑= −
′

′
′

′[ ] [ ] [ ] [ ]I n I n I n I n (B.4)
r r

r r

r r

r r

, ,

∑ ∑ ∑= + −
′

′
′

′

≠ ′

[ ] [ ] [ ] [ ] [ ]I n I n I n I n I n (B.5)
r

r

r r

r r

r r

r r
2

, ,
r r

∑ ∑ ∑= + −
′

′
′

′

≠ ′

[ ] [ ] [ ] [ ] [ ]I n I n I n I n I n (B.6)
r

r

r r

r r

r r

r r

, ,
r r

∑= −− −e e (B.7)
r

MF MF2r r

where we used that =I x I x[ ] [ ]2 and that Poisson processes of different words ( ≠ ′r r ) are
independent of each other.
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Appendix C. Calculation Eq N(M )2
h i

⎡⎣ ⎤⎦ =N M N M N M( ) ( ) ( ) (C.1)q
i j i j

i j
2 ( , ) ( , )

,

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑=
′

′ ′( ) ( )I n M F I n M F, , (C.2)
r r

r
i

r
j

r
i

r
j

i j,

( ) ( ) ( ) ( )

,

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑

∑∑

=

+
′≠

′ ′

( )

( ) ( )

I n M F

I n M F I n M F

,

, , (C.3)

r
r

i
r

j

i j

r r r
r

i
r

j
r

i
r

j

i j

( ) ( ) 2

,

( ) ( ) ( ) ( )

,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑

∑ ∑

=

+
′≠

′ ′

( )

( ) ( )

I n M F

I n M F I n M F

,

, , (C.4)

r
r

i
r

j
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r r r
r

i
r

j

i
r

i
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i j

( ) ( )

,

( ) ( ) ( ) ( )
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= −

+ − −

−

′≠

− − ′( )( )

1 e

1 e 1 e (C.5)

r

MF

r r r

MF MF

r

r r

where we used =I x I x[ ] [ ]2 , equation (9), and that two Poisson process of different words
( ≠ ′r r ) with a given set of frequencies Fr

j( ) are independent of each other.

Appendix D. Adding texts

In this section, we show the calculation for the quenched averages of the mean and the variance
of the vocabulary growth when considering a text of length ′M from the concatenation of k
different texts of length Mi with ′ = ∑ =M Mi

k
i1 . We will first focus on the case k = 2, i.e.,

′ = +M M M1 2, from which we can easily generalize to arbitrary k.
We consider the vocabulary growth, ′N M( ), as a random variable in which we concatenate

two independent realizations of the stochastic process introduced in section 3.2 indicated by
subscript (1) and (2) respectively:

⎡⎣ ⎤⎦∑′ = + = +( ) ( )( )N M M M I n M F n M F, , (D.1)
r

r r r r1 2
(1)

1
(1) (2)

2
(2)

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑= +

−

( ) ( )

( ) ( )

I n M F I n M F

I n M F I n M F

, ,

, , (D.2)

r
r r r r

r r r r

(1)
1

(1) (2)
2

(2)

(1)
1

(1) (2)
2

(2)
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in which the word r is counted as part of the vocabulary if it appears in either of the two
concatenated realizations of the stochastic process. In the same spirit as in section 3.2, taking
expectation values requires averaging over all realizations of the Poisson process (i i,1 2) given
the frequencies F F,r

j
r

j( ) ( )1 2 as well as averaging over all realizations of those frequencies ( j j,1 2),
which we denote by 〈 〉· i i j j, , ,1 2 1 2

. For the individual terms appearing in ′ = +N M M M( )1 2 , we
obtain

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ = − −( )I n M F, 1 e (D.3)
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r

i
r

j

i i j j
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j
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, , ,

r
j

1 1

1 2 1 2

1
1

1

⎜ ⎟
⎡
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⎛
⎝

⎞
⎠

⎤
⎦⎥ = − −( )I n M F, 1 e , (D.4)
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2 2
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2

in which we can separate the average over i j( , )1 1 and i j( , )2 2 , assuming that the two
concatenated realizations i j( , )1 1 and i j( , )2 2 of the original stochastic process are independent.
For the calculation of the expectation of ′ = +N M M M( )1 2

2, we get higher order terms for
≠ ′r r :

⎜ ⎟ ⎜ ⎟
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From this, we can evaluate the mean and variance

⎡⎣ ⎤⎦ ∑′ = + = − − −( )N M M M 1 e e (D.7)q

r

M F M F
1 2

r r1 2
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∑
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M F M F M F M F

M F M F M F M F

1 2
2 2

,

r r r r

r r r r

r r r r

1 2 1 2

1 1 2 2

1 1 2 2

Generalizing to the concatenation of an arbitrary number of k texts can be treated in the
very same way; however, we will only state the result for the case of adding k texts of equal
length M such that ′ = ×M k M :
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 ∑′ = × = − −N M k M[ ( )] 1 e (D.9)q

r

MF k
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′ = × = −
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N M k M[ ( )] e e
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Appendix E. Vocabulary growth for Gamma-distributed frequency and a double
power-law

Assuming a gamma-distribution for the distribution of the frequency of single words across
different texts [38]

Γ
= =Γ

− − −( )P F x a b
a

b x; ,
1
( )

e (E.1)r
a a x b1

we can calculate the quenched average

∫= = = +Γ
− − −( )xP F x a b bMe d ; , e (1 ) . (E.2)MF

r
Mx ar

If we assume that the distribution of frequencies for all words is given by the same shape-
parameter a (e.g., a = 1 corresponds to an exponential distribution) and fix the mean of the
distribution, given by =F abr we get = +− −M F ae (1 )MF

r
ar . Assuming a double

power-law for the average rank-frequency distribution [19] with parameters γ and r̃ , i.e.,
= −F Crr

1 for ⩽r r̃ and = γ γ− −F Cr r˜r
1 for >r r̃ , where γ=C C r( ˜, ) is the normalization

constant determined by imposing ∑ =F 1r r , we can calculate the vocabulary growth
according to equation (4) analytically in the continuum approximation by substituting =x F: r

 ∑= − + −( )N M M F a[ ( )] 1 1 (E.3)q

r

r
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∫= − − + −[ ]x
r
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1 (1 ) (E.4)a
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1

which can be expressed in terms of the ordinary hypergeometric function =H F: 2 1 [45]
yielding
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a

where the vocabulary growth  N M[ ( )]q is parametrized by γ, r̃ , and a.
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In the limit → ∞a , the Gamma distribution =ΓP F x a b( ; , )r with given mean
= =F ab const.r converges to a Gaussian with σ = F ar

2 2 . For → ∞a , σ → 02 and
we recover the Poisson null model, equations (4), (5), in which the individual frequencies Fr are
fixed (annealed average).
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