
Statistical Laws in Linguistics

Eduardo G. Altmann and Martin Gerlach

Abstract Zipf’s law is just one out of many universal laws proposed to describe sta-
tistical regularities in language. Here we review and critically discuss how these laws
can be statistically interpreted, fitted, and tested (falsified). The modern availability
of large databases of written text allows for tests with an unprecedent statistical ac-
curacy and also for a characterization of the fluctuations around the typical behavior.
We find that fluctuations are usually much larger than expected based on simplifying
statistical assumptions (e.g., independence and lack of correlations between obser-
vations). These simplifications appear also in usual statistical tests so that the large
fluctuations can be erroneously interpreted as a falsification of the law. Instead, here
we argue that linguistic laws are only meaningful (falsifiable) if accompanied by a
model for which the fluctuations can be computed (e.g., a generative model of the
text). The large fluctuations we report show that the constraints imposed by linguistic
laws on the creativity process of text generation are not as tight as one could expect.

“...‘language in use’ cannot be studied without statistics” Gustav Herdan (1964) [1]

1 Introduction

In the past 100years regularities in the frequency of text constituents have been
summarized in the form of linguistic laws. For instance, Zipf’s law states that the
frequency f of the r th most frequent word in a text is inversely proportional to its
rank: f ∝ 1/r [2]. This and other less famous linguistic laws are one of the main
objects of study of quantitative linguistics [3–8].

Linguistic laws have both theoretical and practical importance. They provide in-
sights on the mechanisms of text (language, thought) production and are also crucial
in applications of statistical natural language processing (e.g., information retrieval).
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Both the generative and data analyses views of linguistic laws are increasingly impor-
tant in modern applications. Data mining algorithms profit from accurate estimations
of the vocabulary size of a collection of texts (corpus), e.g., through Heaps’ law dis-
cussed in the next section. Methods for the automatic generation of natural language
can profit from knowing the linguistic laws underlying usual texts. For instance,
linguistic laws may be included as (additional) constraints in the space of possi-
ble (Markov generated) texts [9] and can thus be considered as constraints to the
creativity of authors.

Besides giving an overview on various examples of linguistic laws (Sect. 2), in
this chapter we focus on their probabilistic interpretation (Sect. 3), we discuss differ-
ent statistical methods of data analysis (Sect. 4), and the possibilities of connecting
different laws (Sect. 5). The modern availability of large text databases allows for an
improved view on linguistic laws that requires a careful discussion of their interpre-
tation. Typically, more data confirms the observations motivating the laws—mostly
based on visual inspection—but makes it increasingly difficult for the laws to pass
statistical tests designed to evaluate their validity. This leads to a seemingly contra-
dictory situation: while the laws allow for an estimation of the general behavior (e.g.,
they aremuch better than alternative descriptions), they are strictly speaking falsified.
The aim of this contribution is to present this problem and discuss alternative inter-
pretations of the results. We argue that the statistical analysis of texts often shows
long-range correlations and large (topical) fluctuations. We conclude that proper sta-
tistical analysis of linguistic laws, including tests of their validity, should consider
(null) models that account for the observed fluctuations and correlations.

2 Examples and Observations

An insightful introduction to Linguistic Laws is given in Ref. [5] by Köhler, who
distinguishes between three kinds of laws as follows:

1. “The first kind takes the form of probability distributions, i.e., it makes predictions
about the number of units of a given property.”

2. “The second kind of law is called the functional type, because these laws link two
(or more) variables, i.e., properties.”

3. “The third kind of law is the developmental one. Here, a property is related to
time.” (time may be measured in terms of text length)

We use the term linguistic law to denote quantitative relationships between mea-
surements obtained in a written text or corpus, in contrast to syntactic rules and
to phonetic and language change laws (e.g., Grimm’s law, see also the chapter by
R. Blythe in this book). We assume that the laws make statements about individual
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Fig. 1 Examples of linguistic laws: a Zipf, b Menzerath–Altmann, and c Heaps’ laws. Data from
one book (green, Moby Dick by H. Melville) and for the English Wikipedia (red) are shown.
Dotted (black) lines are the linguistic laws with arbitrary parameter, chosen for visual comparison
(see Appendix for details)

texts (corpus) and are exact in an appropriate limit (e.g., large corpus).1 Each law
contains parameters which we denote by Greek letters α, β, γ , and often refer to
the frequency f (q) of a quantity q in the text (with

∑
q f (q) = 1). Probabilities are

denoted by P(q).
Next we discuss in detail one representative example of each of the three types

of laws mentioned above: Zipf, Menzerath–Altmann, and Heaps’ laws, respectively,
see Fig. 1.
1. Zipf’s law is the best-known linguistic law (see, e.g., Ref. [10] for historical
references). In an early and simple formulation, it states that if words (types) are
ranked according to their frequency of appearance r = 1, 2, . . . , V , the frequency
f (r) of the rth word (type) scales with the rank as

f (r) = f (1)

r
, (1)

where f (1) is the frequency of the most frequent word. The above expression cannot
hold for large r because for any f (1) > 0, there exist an r∗ such that

∑r∗
r=1 f (1)/r >

1. Taking also into account that f (1) may not be the best proportionality factor, a
modern version of Zipf’s law is

f (r) = βZ

rαZ
, (2)

with αZ � 1, see Fig. 1a. The analogy with other processes showing fat-tailed dis-
tribution motivates the alternative formulation

1While some of the laws clearly intend to speak about the language as a whole, in practice they
are tested and motivated by observations in specific texts which are thus implicitly or explicitly
assumed to reflect the language as a whole.



10 E.G. Altmann and M. Gerlach

P( f ) = β
†
Z

f α
†
Z

, (3)

where P( f ) is the fraction (probability) of the total number of words that have
frequency f . Formulations (2) and (3) can be mapped to each other with α† =
1 + 1/α [10–12].
2. Menzerath–Altmann law received considerable attention after the works of
Gabriel Altmann [4–6, 13]. Menzerath’s general (qualitative) statement originat-
ing from his observations about phonemes is that “the greater the whole the smaller
its parts.” The quantitative law intended to describe this observation is [13]

y = αM xβM e−γM x , (4)

where x measures the length of the whole and y the (average) size of the parts. One
example [13] is obtained computing for each word w the number of syllables xw and
the number of phonemes zw. The length of the word (the whole) is measured by the
number of syllables xw, while the length of the parts is measured for each word as
the average number of phonemes per syllable yw = zw/xw. The comparison to the
law is made by averaging yw over all words w with xw = x , see Fig. 1b. The ideas of
Menzerath–Altmann law and Eq. (4) have been extended and applied to a variety of
problems, see Ref. [14] and references therein.
3. Heaps’ law states that the number of different words V (i.e., word types) scales
with database size N measured in the total number of words (i.e., word tokens) as
[1, 15]

V ∼ NαH . (5)

In Fig. 1c this relationship is shown in two different representations. For a single
book, the value of N is increased from the first word (token) until the end of the book
so that V (N ) draws a curve. For the English Wikipedia, each article is considered as
a separate document for which V and N are computed and shown as dots.

The nontrivial regularities and the similarity between the two disparate databases
found for the three cases analyzed in Fig. 1 strongly suggest that the three linguistic
laws summarized above capture important properties of the structure of texts. Addi-
tional examples of linguistic laws are listed in Table1, see also the vast literature in
quantitative linguistics [3–6]. The (qualitative) observations reported above motivate
us to search for quantitative analysis that match the requirements of applications and
the accuracy made possible through the use of large corpora. The natural questions
that we would like to address here are: Are these laws true (compatible with the
observations)? How to determine their parameters? How much fluctuations around
them should be expected (allowed)? Are these laws related to each other? Before
addressing these questions we discuss how should one interpret linguistic laws.
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Table 1 List of linguistic laws

Name of the law Observables Functional form References

Zipf f : freq. of word w; r :
rank of w in f

f (r) = βZ r−αZ [2, 10, 11, 16–19]

Menzerath–Altmann x : length of the
whole; y : size of the
parts

y = αM xβM e−γM x [13, 14]

Heaps V : number of words;
N : database size

V ∼ NαH [1, 15, 20–24]

Recurrence τ : distance between
words

P(τ ) ∼ exp (ατ)β [2, 25–27]

Long-range
correlation

C(τ ): autocorrelation
at lag τ

C(τ ) ∼ τ−α [28–30]

Entropy scaling H : entropy of text
with blocks of size n

H ∼ αnβ + γ n [31, 32]

Information content I (l) : information of
word with length l

I (l) = α + βl [2, 33]

Taylor’s law σ : standard deviation
around the mean μ

σ ∼ μα [24]

Networks Topology of
lexical/semantic
networks

Various [34–37]

3 Interpretation of Linguistic Laws

In Chap.26 Text Laws of Ref. [3], Hřebiček argues that

...the notion law (in the narrower sense scientific law) in linguistics and especially in quan-
titative linguistics ... need not obtain some special comprehension different from its validity
in other sciences. Probably, the best delimitation of this concept can be found in the works
by the philosopher of scientific knowledge Karl Raimund Popper...

This view is also emphasized by Köhler in Ref. [5], who distinguishes laws from
rules and states that a “significant difference is that rules can be violated—laws (in
the scientific sense) cannot.”.

Such a straightforward identification between linguistic and scientific laws masks
the central role played by statistics (and probability theory) in the interpretation of
linguistic laws. To see this, first notice that these laws do not directly affect the
production of (grammatically and semantically) meaningful sentences, e.g., because
they involve scales much larger or shorter than a sentence. It is thus not difficult
to be convinced that a creative and persistent daemon,2 trained in the techniques of
constrained writing [38] (see also the chapter by A. Papadopoulos, F. Pachet, and P.
Roy in this book), can generate understandable and arbitrary long texts which delib-
erately violate any single law mentioned above. In a strict Popperian sense, a single

2A relative of Maxwell’s Daemon known from Thermodynamics.
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of such demonic texts would be sufficient to falsify the proposed laws. Linguistic
laws are thus different from syntactic rules and require a different interpretation than,
e.g., the laws of classical physics.

The central role of statistics in Quantitative Linguistics was emphasized by its
founding father Gustav Herdan:

The distinction between language laws in the conventional sense and statistical laws of
language corresponds closely to that between the classical laws of nature, or the physical
universe, and the statistical laws of modern physics [1].

Altmann, when discussing Menzerath law [13], also emphasizes that “this law is a
stochastic one,” and Köhler [3] refers to the concept of stochastic hypothesis. There
are at least two instances in which a statistical interpretation should be included:

1. In the statement of the law, e.g., in Zipf’s law (3) the probability of finding a word
with frequency f decays as P( f ) ∼ f −α†

z .
2. In the interpretation of the law as being typical in a collection of texts, e.g., in

Heaps’ law the vocabulary V of a typical text of size N is V ∼ NαH .

The demonic texts mentioned above would be considered untypical (or highly un-
likely). Statistical laws in at least one of these senses are characteristic not only of
modern physics, as pointed out by Herdan, but also of different areas of natural and
social sciences: Benford’s law predicts the frequency of the first digit of numbers
appearing in a corpus [39] and the Gutenberg–Richter law determines the frequency
of earthquakes of a given magnitude [40]. The analysis of these laws, including pos-
sible refutations, have to be done through statistical methods, the subject of the next
section. Important aspects of linguistic laws not discussed in detail in this chapter in-
clude: (i) the universality and variability of parameters of linguistic laws (e.g., across
different languages [21, 22, 37, 41, 42] (see also the chapter by M.A. Montemurro
and D.H. Zannette in this book), as a function of size [43] and degree of mixture
of the corpus [44], styles [29], and age of speakers [45]); and (ii) the relevance and
origins of the laws. This second point was intensively debated for Zipf’s law [8, 19,
46], with quantitative approaches based on stochastic processes—e.g., the Monkey
typewriter model [11, 47] and rich-get-richer mechanisms [10, 11, 16, 18, 22]—and
on optimization principles—e.g., between speaker and hearer [2, 48], of the mutual
information between forms and meanings [49], or of general entropy maximization
principles [50, 51].

4 Statistical Analysis

In Sect. 2 we argued in favor of linguistic laws by showing a graphical representation
of the data (Fig. 1). The widespread availability of large databases and the applica-
tions of linguistic laws require and allow for a more rigorous statistical analysis of
the results. To this end we assume the linguistic law can be translated into a pre-
cise mathematical statement about a curve or distribution, which contain a set of
parameters. Legitimate questions to be addressed are:
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(1) Fitting. What are the best parameters of the law to describe a given data?
(2) Model Comparison. Is the law better than an alternative one?
(3) Validity. Is the law compatible with the observations?

These points are representative of statistical analysis performed more generally and
should preceed any more fundamental discussion on the origin and importance of a
specific law. Below we discuss in more details how each of the three points listed
above has been and can be addressed in the case of linguistic laws.

4.1 Graphical Approaches

Visual inspection and graphical approacheswere the first type of analysis of linguistic
laws and are still widely used. One simple and still very popular fitting approach is
least squares (minimize the squared distance between data and models). Often this
is done in combination with a transformation of variables that maps the law into
a straight line (e.g., using logarithmic scales in the axis or taking the logarithm
of the independent and dependent variable in the Zipf’s and Heaps’ laws). These
transformations are important to visually detect patterns and are parts of any data
analysis. However, they are not appropriate for a quantitative analysis of the data. The
problem of fitting straight lines in log–log scale is that least square fitting assumes
an uncertainty (fluctuation) on each point that is independent, Gaussian distributed,
and equal in size for all fitted points. These assumptions are usually not justified
(see, e.g., Refs. [52, 53] for the case of fitting power-law distributions), while at
the same time the uncertainties are modified through the transformation of variables
(such as using the log scale). Furthermore, quantifying the goodness-of-fit by using
the correlation coefficient R2 in these scales is insufficient to evaluate the validity of
a given law. A high quality of the fit indicates a high correlation between data and
model, but is unable to assign a probability for observations and thus it is not suited
for a rigorous test of the law.

4.2 Likelihood Methods

A central quantity in the statistical analysis of data is the likelihoodL (x;α) that the
data x was generated by the model (with a set of parameters α).

(1) Fitting
When fitting a model (law) to data, the approach is to tacitly assume its validity
and then search for the best parameters to account for the data. It corresponds to a
search in the (multidimensional) parameter space α of the law for the value α̂ that
maximize L .

In laws of the first kind—as listed in Sect. 2—the quantity to be estimated from
data is a probability distribution P(x;α). The probability of an observation x j is
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thus given by P(x j ;α). Assuming that all J observations are independent, the best
parameter estimates α̂ are the values of α that maximize the log-likelihood

loge L = log P(x1, x2, . . . , xJ ;α) =
J∑

j=1

log P(x j ;α), (6)

The need for Maximum Likelihood (ML) methods when fitting power-law distrib-
utions (such as Zipf’s law) has been emphasized in many recent publications. We
refer to the review article Ref. [54] and references therein for more details, and to
Ref. [55] for fitting truncated distributions (e.g., due to cutoffs).

In laws of the second and third kind—as listed in Sect. 2—the quantity to be
described y is a function y = yg(x;α). Fitting requires assumptions regarding the
possible fluctuations in y(x). One possibility is to assume Gaussian fluctuations with
a standard deviation σ(x). In this case, assuming again that the observations x are
independent [56]

loge L ∼ −
∑

j

(
y(x j ) − yg(x j )

σ (x j )

)2

, (7)

where the sum is over all observations j . The best estimated parameters α̂ are obtained
minimizing χ2 = ∑

j (
y(x j )−yg(x j )

σ (x j )
)2, which maximizes (7). Least squares fitting is

equivalent toMaximumLikelihood fitting only in the case of constantσ (independent
of x) [56].

(2) Model Comparison
The comparison between two different functional forms of the law (m1 and m2) is
done comparing their likelihoods, e.g., through the log-likelihood ratio loge Lm1/Lm2

[57]. A value loge Lm1/Lm2 = 1 (−1) means it is e1 = 2.718 . . . times more (less)
likely that the data was generated by function m1 than by function m2 (see Ref. [54]
for discussions on the significance of the log-likelihood ratio). If the two models
have a different number of parameters, one can penalize the model with higher
number of parameters, e.g., using the Akaike information criterion [58], calculating
the Bayes factor by averaging (in the space of parameters) over the full posterior
distribution [59], or using the principle of minimum description length [60].

(3) Validity
The probabilistic nature of linguistic laws requires statistical tests. One possible
approach is to assume a null model (compatible with the linguistic law) and compare
the fluctuations of finite-size outcomes of this model with the ones observed in
the data. The probability (p-value) that the model generates fluctuations at least as
extreme as the ones observed in the data may be used as a test of the validity of the
model. A low p-value is a strong indication that the null model is violated and may
be used to refute the law (e.g., if p-value < 0.01). Defining a measure of distance D
between the data and the model, the p-value can be computed as the fraction of finite-
size realizations of the model (assuming it is true) that show a distance D′ > D. In
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the case of probability distributions—linguistic laws of the first kind in Sect. 2—the
distance D is usually taken to be the Kolmogorov–Smirnov distance (the largest
distance between the empirical and fitted cumulative distributions). In the case of
simple functions—linguistic laws of the second and third kind in Sect. 2—one can
consider D = χ2.

Application: Menzerath–Altmann law

We applied the likelihood analysis summarized above to the case of the
Menzerath–Altmann law introduced in Sect. 2. Our critical assumption here
is that the law is intended to describe the average number of phonemes per
syllable, y, computed over many words w with the same number of syllables
x . Assuming the words are independent of each other, the uncertainty in y(x)

is thus the standard error of the mean given by σy(x) = σw(x)/
√

N (x), where
σw(x) is the (empirical) standard deviation over the words with x-syllables and
N (x) is the number of such words.

In Fig. 2 and Table2 we report the fitting, model comparison, and valid-
ity analysis for the Menzerath–Altmann law—Eq. (4)—and three alternative
functions with the same number of parameters. The results show that two of
the three alternative functions (shifted power law and stretched exponential)
provide a better description than the proposed law, which we can safely con-
sider to be incompatible with the data (p-value < 10−5). Considering the two
databases, the stretched exponential distribution provides the best description
and is not refuted. These results depend strongly on the procedure used to
identify phonemes and syllables (see Appendix).

Fig. 2 Model comparison for the Menzerath–Altmann law. Data points are the average over all
word (types) in a book (Moby Dick by H. Melville, as in Fig. 1). The curves show the best fits of the
four alternative curves, as reported in Table2. Left plot the data in the original scales, as in Fig. 1.
Right plot the distance between the curves and the points (ŷ − y)/σy , where the uncertainty σy is
the standard error of the mean
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Table 2 Likelihood analysis of the Menzerath–Altmann law and three alternative functions

Menzerath–
Altmann
(MA)
αxβ exp (−γ x)

Shifted power law
α(x + β)γ

Stretched exp.
α exp (βx)γ

Polynom
α + βx + γ x2

Results for one book (Moby Dick by H. Melville)

(α̂, β̂, γ̂ ) (3.3,−0.12,
−0.051)

(2.8,−0.65,
−0.19)

(1.5, 1.4,
−0.51)

(3.9,−0.69,
0.066)

loge Lm/LM A 0 33 25 −475

p-value <10−5 0.611 0.064 <10−5

Results for English Wikipedia

(α̂, β̂, γ̂ ) (3.2,−0.45,
−0.064)

(2.8,−0.70,
−0.18)

(1.6, 1.5,
−0.60)

(3.8,−0.64,
0.061)

loge Lm/LM A 0 11 49 −1898

p-value <10−5 2 × 10−5 0.93 <10−5

The parameters (α̂, β̂, γ̂ ) that maximize the likelihood Lm of model m were computed using the
downhill simplex algorithm (using the Python library scipy). The reported p-value corresponds to
the fraction of random realizations with a χ2 larger than the observed χ2. In each realization, one
point y†(x) was generated at each x from a Gaussian distribution centered at the model prediction
ym(x) with a standard deviation σy(x) given by the data. The best models and the results with
p > 0.01 are shown in bold face

4.3 Critical Discussion

In the next paragraphs we critically discuss the likelihood approach considering the
example of Zipf’s law.

Fitting as Model Comparison

In the beginning of this section we started with the distinction between fitting (i.e.,
fixing free parameters) andmodel comparison (i.e., choosing between different mod-
els). This division is didactic [54], but from a formal point of view both procedures
correspond to hypothesis testing because the free parameters of one fitting model
can be thought as a continuous parameterization of different models which should
be compared and selected according to their likelihood [61]. This means that the
points mentioned below apply equally well to both fitting and hypothesis testing
(and, in most cases, also to test the validity of the models).

Fitting Ranks

Power-law fitting recipes [54]—employed for linguistic [46] and nonlinguistic
problems—suggest to fit Zipf’s law using the distribution of frequencies P( f ) given
in Eq. (3). However, it is also possible to use the rank formulation (2) [22] because
the frequency of ranks f (r) is normalized

∑
r f (r) = 1 and can thus be interpreted



Statistical Laws in Linguistics 17

as a probability distribution. However, a drawback in fitting f (r) is that the process
of ranking introduces a bias in the estimator [62, 63]. For instance, consider a finite
sample from a true Zipf distribution containing ranks r = 1, . . . ,∞. Because of sta-
tistical fluctuations, some of the rankings will be inverted (or absent) so that when
we rank the words according to the observations obtain ranks different from the ones
drawn. This effect introduces bias in our estimation of the parameters (overestimat-
ing the quality of the fit). However, the words affected by this bias are the ones with
largest ranks, which contribute very little to the estimation of the parameters of Zipf’s
law (as discussed below). Therefore, we expect this bias to become negligible even
for moderately large sample sizes.

Representation Matters

Equivalent formulations of the linguistic laws lead to different statistical analysis
and conclusions [62, 63]. One example of this point is the use of transformations
before the fitting is performed, such as the linear fit of Zipf’s law in logarithmic scale
discussed in Sect. 4.1. The variables used to represent the linguistic law are also
crucial when likelihood methods are used, as discussed above for the case of Zipf’s
law represented in f (r) or P( f ).While asymptotically (N → ∞) these formulations
are equivalent, the likelihood computed in both cases is different. In the likelihood
of P( f ), an observation corresponds to the frequency of a word type. This means
that the most frequent words in the database count the same as words appearing only
once (the hapax legomena). In practice, the part of the distribution that matters the
most in the fitting (and in the likelihood) are the words with very few counts, which
contribute very little to the total text. In the likelihood of f (r) the observational
quantity is the rank r of each occurrence of the word meaning that each word token
counts the same. This means that the frequent words contribute more and the fitting
of f (r) is robust against rare words. Linear regression in log–log plot counts every
point in the plot the same and, since there are more points for large r , low-frequency
words dominate the fit. Using logarithmic binning, as suggested in Ref. [52], equalize
the importance of words across log(r). In summary, while fitting a straight line in
log–log scale using logarithmic binning gives the same value for words across the
full spectrum (in a logarithmic scale), the statistical rigorous methods of Maximum
Likelihood will be dominated either by the most frequent (in case of fitting in f (r))
or least frequent (in case of fitting in P( f )) words.

Beyond Zipf’s law, the reasoning above shows that even if asymptotically (i.e.,
infinite data) different formulations of a law are equivalent, the representation in
which we test the law matters because it assumes a sampling process of the data.
This in turn leads to different results when applied to finite and often noisy data and
has to be taken into account when interpreting the results.
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Application: Fitting Zipf’s law

In Fig. 3 and Table3 we compare the different fitting methods described above.
The visual agreement between data and the fitted curves reflects the different
weights given by the methods to different regions of the distribution as dis-
cussed above (high-frequency words for f (r) and low-frequency words for the
other two cases). Not surprisingly, Table3 shows that the estimated exponent α
varies frommethod to method. This variation is larger than the variation across
different databases. Large values of R2 computed in the linear fit, usually in-
terpreted as an indication of good fitting, are observed also when the p-values
are very low.

Correlated Samples

The failure of passing significance tests for increasing data size is not surprising
because any small deviation from the null model becomes statistically significant.
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Fig. 3 Comparison of the Zipf’s law obtained using three different fitting methods. Results are
shown for one book (Moby Dick by H. Melville, top row) and for the complete English Wikipedia
(bottom row). Data is fitted using Maximum Likelihood (ML) in the frequency rank f (r) (left),
ML in the frequency distribution P( f ) ∼ p(k) (center), and least square (LS) in the log f versus
log r representation (right). Insets show the cumulative distributions. See Table3 for the parameter
α̂ and significance test of the fits. In the plot in the center, instead of P( f ) we use the distribution
the unnormalized frequency p(k) (i.e., k is the number of occurrences of a word in the database).
For ML fits, we used a discrete power law in f (r) and p(k)with support in [1,∞) (exponents were
obtained using the downhill simplex algorithm of the Python library scipy). For the LS fit, we used
a continuous straight line in log f (log r) for all r > 0 [56]
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Table 3 Zipf’s law exponent obtained using different fitting methods, see Fig. 3

Book Rank: f (r) Frequency: P( f ) Linear: log f (log r)

α̂Z p-value α̂Z p-value α̂Z R2

Alice’s Adventures in Wonderland
(L. Carroll)

1.22 <10−4 1.46 <10−4 1.21 0.97

The Voyage Of The Beagle (C.
Darwin)

1.20 <10−4 1.59 <10−4 1.29 0.97

The Jungle (U. Sinclair) 1.21 <10−4 1.45 <10−4 1.22 0.98

Life On The Mississippi (M. Twain) 1.20 <10−4 1.38 <10−4 1.16 0.98

Moby Dick; or The Whale (H.
Melville)

1.19 <10−4 1.38 <10−4 1.15 0.98

Pride and Prejudice (J. Austen) 1.21 <10−4 1.66 <10−4 1.35 0.98

Don Quixote (M. Cervantes) 1.21 <10−4 1.70 <10−4 1.38 0.98

The Adventures of Tom Sawyer (M.
Twain)

1.21 <10−4 1.29 <10−4 1.12 0.98

Ulysses (J. Joyce) 1.18 <10−4 1.15 <10−4 1.03 0.97

War and Peace (L. Tolstoy) 1.20 <10−4 1.84 <10−4 1.44 0.97

English Wikipedia 1.17 <10−4 1.60 <10−4 1.58 0.99

In the fit of P( f ) (frequency) we obtain α̂
†
Z and calculate α̂Z = 1/(α̂†

Z − 1), see Eqs. (2) and (3).
English version of the books were obtained from the Project Gutenberg, see Appendix

A possible conclusion emerging from these analysis is that power-law distributions
are not as widely valid as previously claimed (see also Refs. [54, 64]), but often are
better than alternative (simple) descriptions (see our previous publication Ref. [22] in
which we consider two-parameter generalizations of Zipf’s law). The main criticism
we have on this widely used framework of analysis is that it ignores the presence
of correlations in the data: the computation of the likelihood in Eq. (6) assumes
independent observations. Furthermore, this assumption leads to an underestimation
of the expected fluctuations (e.g., KS distance) in the calculation of the p-value when
assessing the validity of the law. It is thus unclear in which extent a negative result
in the validity test (e.g., p-value 	 0.01) is due to a failure of the proposed law
or, instead, is due to the violation of the hypothesis of independent sampling. This
hypothesis is known to be violated in texts [7, 27]: the sequence of words and letters
are obviously related to each other. In Fig. 4 we show that these correlations affect
the estimation of the frequency f of individual words. Fluctuations are much larger
than expected not only from the independent random usage of words (Poisson or bag-
of-words models) but also from a null model in which burstiness is included [25,
27]. Altogether, this shows that the independence assumption—used to write the
likelihood (6)—is strongly violated. For the analysis of Zipf’s law discussed above,
the obvious correlation throughout (the tokens of) a book directly affects the (rank)
analysis based on f (r). Also the (frequency) analysis based on P( f ) is strongly
affected by correlations because the estimation of the frequency f of a word is
always performed in a finite sample (finite book) which is analogous to an n < N in
Fig. 4.
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Fig. 4 Estimation of the frequency of a word in the first n word tokens of a book (Moby Dick
by H. Melville). The red curve corresponds to the actual observation (word “water” in the left and
word “whale” in the right) and the blue curve to the curve measured in a version of the book in
which all word tokens were randomly shuffled. The shaded regions show the expected fluctuations
(±2σ ) assuming that the probability of using the word is given by the frequency of the word in
the whole book ( f (n = N ) and that: (i) usage is random (blue region)—see also Ref. [7] or (ii)
the time between successive usages of the word is drawn randomly from a stretched exponential
distribution with exponent β = 0.5, as proposed in Ref. [25]

One approach to take into account correlations is to estimate a time for which
two observations are independent, and then consider observations only after this
time (a smaller effective sample size). Alternative approaches considered statistical
tests for specific classes of stochastic processes (correlated in time) [65] or based
on estimations of the correlation coming from the data [66]. The application of
these methods to linguistic laws is not straightforward because these methods fail
in cases in which no characteristic correlation time exist. Books show such long-
range correlations [29], also in the position of individual words in books [28, 30],
in agreement with the observations reported in Fig. 4. More generally, correlations
lead to a slower convergence to asymptotic values and it is thus possible to create
processes of text generation that comply to a linguistic law asymptotically but that (in
finite samples) violate statistical tests based on independent sampling. The problem
affects also model comparison and fitting because these problems are also based on
the likelihood (in these cases, correlation affects all models and therefore it is unclear
the extent in which it impacts the choice of the best model).

5 Relation Between Laws

In view of the different laws proposed to describe text properties, a natural question
is the relationship between them (e.g., whether one law can be derived from another
or whether there are generative processes that account for more than one law simul-
taneously). For instance, Ref. [30] clarifies how the long-range correlation of texts
is related to the skewed distribution of recurrence time between words [2, 25–27] (a
consequence of burstiness [8, 67]). Another well-known relation is the connection
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between Heaps’ law and Zipf’s law [20, 22–24, 43] (see Refs. [24, 31, 32, 67] for
other examples). Here again the importance of fluctuations and an underlying null
model is often neglected.

The need for a null model is evident if we consider a text in which all possible
words appear once in the very beginning of the text, violating Heaps’ law, even
though their frequency over the full text is still compatible with Zipf’s law. A typical
null model is to consider that every word is used independently from the others
with a probability equal to its global frequency. This probability is usually taken
to be constant throughout the text (Poisson process), but alternative formulations
considering time-dependent frequencies lead to similar results. For this generative
model, Zipf’s law (2) leads to a Heaps’ law (5) with parameters αH = 1/αZ [22].
Similar null models are implicitly or explicitly assumed in different derivations [20,
22–24, 43].

Figure5 shows that the connection between Zipf’s and Heaps’ law using the
independent usage of words fails to reproduce the fluctuations observed in data.
In particular, the fluctuations around the average vocabulary size V (Heaps’ law)
scales linearly with N , and not as

√
N as predicted by the independence assumption

(through the central limit theorem). In Ref. [24] we have shown that this scaling—
also known as Taylor’s law [68]—is a result of correlations in the usage of different
words induced by the existence of topical structures inside and across books.

100 102 104 106

rank: r

10−1

10−3

10−5

10−7

10−9

fr
eq

ue
nc

y:
f
( r
)

100 101 102 103 104 105

textlength: N

100

101

102

103

104

vo
ca

bu
la

ry
:
V

Poisson
Data

100 101 102 103 104

mean: μV (N)

100

101

102

103

sd
ev

:
σ
V
( N

)

Poisson
Data

σ ∼ μ0.5

σ ∼ μ1

(a) (b) (c)

Fig. 5 Relation between Zipf’s law and Heaps’ law in the English Wikipedia. Fixing the rank-
frequency distribution of the complete English Wikipedia—shown in panel (a)— and assuming
each word to follow a Poisson process (i.e., to be used randomly) with fixed frequency f (r), one
obtains the blue curve for the Heaps’ law in (b). Considering eachWikipedia article separately—as
shown by black dots in (b)—we estimate in a moving window centered in N the average μV (N ) and
standard deviation σV (N ) over all articles in the window. The dependence of μV (N ) on N is shown
in (b) by a solid line. The dependence of σV (N ) on μV (N ) is shown in (c) and reveals a different
scaling than the one predicted by the Poisson model. Figure adapted from Ref. [24]
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6 Discussion

It is common to find claims that a particular linguistic law is valid in a language
or corpus. A closer inspection for the statistical support of these claims is often
disappointing. In this chapter we performed a critical discussion of linguistic laws,
the sense in which they can be considered valid, and the extent in which the evidence
support its validity.We argued that linguistic laws have to be interpreted in a statistical
sense. Therefore, model selection (also fitting) and the compatibility to data have to
be performed computing statistical tests based on the likelihood (plausibility) of
the observations. Scientists still have to choose the statistical test and the additional
assumptions (not contained in the original law)which aremore appropriate to address
each specific question. The analysis presented above is intended to show that these
choices matter and should be carefully discussed. The picture that emerges from the
straight applications of the statistical tests above is that: (i) the linguistic laws are often
the best simple description of the data, but (ii) the data is not generated according
to it so that in a strict sense the validity of the law is falsified. This interpretation
suggests that linguistic laws are useful and capture some of the ingredients seen in
language, but are unable to describe the observations in full detail even in the limit
of large texts (possibly because of the existence of additional processes ignored by
the law).

The main limitation of the methods we described, and thus of the conclusions
summarized above, is that they were based not only on the statement of the law but
also on the hypothesis that observations are independent and identically distributed.
This hypothesis is known to be violated in almost all observations of written lan-
guage. It is thus unclear in which extent the rejection of the null model (e.g., from a
small p-value) can be considered a falsification of the linguistic law, and not of the
independency assumption. On the one hand, this reasoning shows the limitation of
the statistical methods and the necessity to apply and develop tests able to deal with
(long range) correlated data. On the other hand, it shows that the usual statements of
linguistic laws are incomplete because they cannot be properly tested. A meaningful
formulation of a linguistic law should allow for the computation of the likelihood of
the observations, e.g., it should be accompanied by a prediction of the fluctuations, a
generative model for the relevant variables, or, ultimately, a model for the generation
of texts. Such models are usually interpreted as an explanation of the origin of the
laws [10, 11, 19] and are absent from the statement of the linguistic laws, despite
the fact that Herdan already drew attention to this point [1]: The quantities which we
call statistical laws being only expectations, they are subject to random fluctuations
whose extent must be regarded as part of the statistical law. In the same sense that a
scientific law cannot be judged separated from a theory, linguistic laws are only fully
defined once a generative process is given. The existence of long-range correlations,
burstiness, and topical variations lead to strong fluctuations in the estimations of
observables in texts, including the quantities described by linguistic laws.

Our findings have consequences to applications in information retrieval and text
generation. For instance, our results show that strong fluctuations around specific
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laws are observed and that results obtained using the independence assumption (e.g.,
bag-of-words models) have a limited applicability. Therefore, statistical laws should
not be imposed too strictly in the generation of artificial texts or in the analysis of
unknown databases. Large fluctuations are as much a characteristic of language as
the laws themselves and therefore the creativity in the generation of texts is much
larger than the one obtained if laws are imposed as strict constraints.

Finally we would like to mention that our conclusions apply also to statistical
laws beyond linguistics. Invariably, the increase of data size leads to a rejection of
null models, e.g., many recent works emphasize that claims of power-law distrib-
utions do not survive rigorous statistical tests [17, 54, 64]. However, the statistical
tests employed in these references, and in most likelihood-based analysis, rely on
the independence assumption of the observations (known to be violated in many
of the treated cases). Nevertheless, we are not aware that this point has been criti-
cally discussed in the large number of publications on power-law fitting. The crucial
role of mechanistic models in the fitting and statistical analysis of scaling laws was
emphasized in Ref. [69] for urban economic data.

Acknowledgments We thank A. Corral, A. Deluca, R. Ferrer-i-Cancho F. Font-Clos, and R.
Guimerá for insightful discussions.

Appendix

The books listed in Table3 were obtained from Project Gutenberg (http://www.
gutenberg.org). The books and data filtering are the same as the ones used in Ref. [30]
(see the Supplementary information of that paper for further details). We removed
capitalization and all symbols except the letters “a–z”, the number “0–9”, the apos-
trophe, and the blank space. A string of symbols between two consecutive blank
spaces was considered to be a word.

The English Wikipedia data was obtained fromWikimedia dumps (http://dumps.
wikimedia.org/). The filtering was the same as the one used in Ref. [24], in which
we removed capitalization and kept only those words (i.e., sequences of symbols
separated by blank space) which consisted exclusively of the letters “a–z” and the
apostrophe.

The computation of Menzerath–Altmann law appearing in Figs. 1, 2, and Table2
was done starting from the unique words (word type) in the database discussed in
the previous paragraphs. For each word w we applied the following steps:

1. Lemmatize using the WordNetLemmatizer (http://wordnet.princeton.edu in the
NLTK Python package http://www.nltk.org/).

2. Count the number of syllables xw based on the Moby Hyphenation List by Grady
Ward, available at http://www.gutenberg.org/ebooks/3204.

3. Count the number of phonemes zw based on The CMU Pronouncing Dictionary,
version 0.7b available at www.speech.cs.cmu.edu/cgi-bin/cmudict.

http://www.gutenberg.org
http://www.gutenberg.org
http://dumps.wikimedia.org/
http://dumps.wikimedia.org/
http://wordnet.princeton.edu
http://www.nltk.org/
http://www.gutenberg.org/ebooks/3204
www.speech.cs.cmu.edu/cgi-bin/cmudict
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For the book Moby Dick by H. Melville, this procedure allowed to compute xw and
zw for 11, 595 words, 66% of the total number of words (before lemmatization). For
the Wikipedia, we obtain 60, 749 words, 1.7% of the total number. The low success
in Wikipedia is due to the size of the database (large number of rare words) and the
results depend more strongly on the procedure described above than on the database
itself.
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