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Abstract.  We show how generalized Gibbs–Shannon entropies can provide 
new insights on the statistical properties of texts. The universal distribution of 
word frequencies (Zipf’s law) implies that the generalized entropies, computed 
at the word level, are dominated by words in a specific range of frequencies. Here 
we show that this is the case not only for the generalized entropies but also for 
the generalized (Jensen–Shannon) divergences, used to compute the similarity 
between dierent texts. This finding allows us to identify the contribution of 
specific words (and word frequencies) for the dierent generalized entropies and 
also to estimate the size of the databases needed to obtain a reliable estimation 
of the divergences. We test our results in large databases of books (from the 
google n-gram database) and scientific papers (indexed by Web of Science).
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1.  Introduction

Generalized entropies, such as the Renyi and Tsallis entropies, have been studied in 
dierent aspects of statistical physics [1, 2] and non-linear dynamics [3]. In information 
theory, these entropies are viewed as a generalizations of the Shannon entropy that are 
potentially useful in particular problems. Many problems require the comparison of the 
divergence (or, its opposite, the similarity) between two or more signals, a problem that 
can be quantified through the use of divergence measures based on generalized ( joint) 
entropies, e.g. in analysis of DNA sequences [4] or image processing [5].

A traditional and increasingly important application of information theory is the 
analysis of (signals based on) natural language [6–11]. This analysis often happens at 
the level of words, i.e. in which each word (type) is considered a dierent symbol of 
analysis. One important statistical feature in the statistical analysis of word frequencies 
is the existence of linguistic laws [12], i.e. statistical regularities observed in a variety 
of databases. The most famous case is Zipf’s law, which specifies how the frequencies 
of words are distributed [13–16].

In this paper we explore the implications of linguistic laws to the computation of 
information-theoretic measures in written text. While information-theoretic approaches 
typically measure the similarity of an ensemble of words (the vocabulary), we show how 
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generalized entropies can be used to assess the influence of individual words to these 
(global) measures, providing a bridge to the studies on evolution of language following 
trajectories of individual words [17, 18]. In particular, we show how the contribution of 
individual words, appearing in dierent scales of frequency, vary in the dierent gen-
eralized entropies. We explore the implications of our findings to two problems: (i) the 
best generalized entropy for highlighting the contribution of physics keywords; and (ii) 
determining how large a given database has to be in order obtain sucient coverage/
sampling of the generalized entropies.

2. Basic concepts

We are interested in extracting information about written documents based on the 
number of times Ni each word i M1, ,= …  appears in each database. For each database, 

we denote by fi the frequency of the word i (i.e. f N Ni i i
M

i1/≡ ∑ = ), which we consider to be 

an estimator of the probability pi of occurrence of this word in the generative process 
underlying the production of the texts. We say that the word i has rank r if it is the 
rth most frequent word.

2.1. Zipf’s law

Dierent databases show similar distributions of word frequencies, a statistical regu-
larity also known as Zipf’s law. While Zipf originally proposed the simple relationship 
f r r1( ) /∝ , more recent analysis in large text databases suggest that the data is better 
described by a double power-law (dp) distribution [14, 19–21]

f r F r b C
r r b

b r r b
; ,

,

,
dp

1

1
( ) ( )

⩾
( )

⎧
⎨
⎩

γ= =
<

γ γ

−

− −� (1)

where b and γ are free parameters, C C b,( )γ=  is the normalization constant (which 

can be approximated as C G1 1 1b 1
1/( /( ))γ≈ + −− , and G rb

a
r
b a

1≡ ∑ =
−  is the bth general-

ized Harmonic number [22]. The more common single-power-law distribution is recov-
ered for b 1→  and our results below apply in this limit as well. In plots and numerical 
calculations we use the distribution (1) with b 7873, 1.77,γ= =  and C  =  0.0922, values 
obtained in [14] for english books published in dierent centuries. In figure 1 we show 
that the modified Zipf’s law indeed provides good account of dierent databases.

2.2. Generalized entropies

In line with the long-tradition of information theory, we use entropies to quantify the 
amount of information contained in written texts. Here we consider the generalized 
entropy of order α [23]

fH f
1

1
1 ,

i

M

i
1

( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∑α=

−
−α
α

=
� (2)
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where f f f f, , , M1 2( )= … , the sum runs over all words for which f 0i ≠ , and α is a free 
parameter yielding a spectrum of entropies. For 1α =  we recover the Gibbs–Shannon 
entropy, i.e. H f flogi i i1 = − ∑α= . In Physics, equation (2) is known as Tsallis entropy  
[1, 2] and has been proposed as a (non-extensive) generalization of the traditional sta-
tistical mechanics.

2.3. Divergence measures

We are particularly interested in using Hα to quantify the distance (or dissimilarity) 
between dierent databases. Here we focus on the generalized Jensen–Shannon diver-
gence [24]

p q
p q

p qD H H H,
2

1

2

1

2
,( ) ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠=

+
− −α α α α� (3)

where p and q are the word frequencies of the two databases and p q p qi i i+ = ∑ +  
is obtained summing over all symbols for which either p 0i ≠  or q 0i ≠ . We focus on Dα 

because αD  can be shown to be a metric for 0 2⩽α< , i.e. it is positive D 0⩾α  (with 

D 0=α  if and only if p q= ), symmetric p q q pD D, ,( ) ( )=α α , and Dα satisfies the trian-

gular inequality [4, 25, 26]. We expect our main results to apply also to other quantities 
obtained from p q pH H, , ,( ) ( )α α  and qH ( )α , such as the generalized mutual information 
and Kullback–Leibler divergence [27]. The usual ( 1α = , Jensen–Shannon) divergence 
is a traditional method in dierent statistical analysis of natural language [6]. For gen-
eralized entropies, increasing (decreasing) α one increases (decreases) the weight of the 
most frequent words allowing for dierent insights into the relationship between the 
databases [28].

Figure 1.  Frequencies of words are distributed over a variety of scales and are 
well described by the modified Zipf’s law. The (thin) black line corresponds to 
equation (1) with b  =  7873 and γ = 1.77 [14]. The (thick) colored lines correspond 
to the frequency of words obtained in dierent databases. (Left) Results for books 
published in the years 1900 and 2000 (see legend), as provided by the google 
n-gram database; (right) results for the abstract of scientific papers indexed in the 
Web of Science between 1991 to 2014 (in Physics and in all fields, see legend).
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3. Eect of Zipf’s law on generalized measures

The goal of this paper is to investigate the consequences of known properties of word 
statistics to the computation of generalized entropic measures. For instance, the num-
ber of dierent words is virtually unbounded and therefore we should carefully consider 
finite-size eects and the role played by the number of observed symbols in our analy-
sis [9, 28]. More specifically, we explore the consequences of Zipf’s law—as reviewed 
in section 2.1—to the computation of the information-theoretic measures based on Hα
—reviewed in sections 2.2 and 2.3. In [28] we have shown that Zipf’s law implies that 
finite-size estimators of Hα and Dα scale very slowly with database size. Here we focus 
on the contribution of individual words to Hα and Dα, showing how dierent frequency 
ranges dominate the estimation for dierent values of α.

3.1. Entropy Hα

The entropy (2) is uniquely defined by the frequency of the words f. From the double 
power-law (dp) frequency distribution, equation (1), we obtain

H F r C h h
1

1
1

1

1
1 ,

r

dp

1

dp 1 2( ( )) ( ( ) )( )
⎛

⎝
⎜

⎞

⎠
⎟∑α α

≡
−

− =
−

+ −α
α α

=

∞

� (4)

with

h r G generalized Harmonic number ,
r

b

b1

1

1

1 (     )∑= ≡α α

=

−
−

−

and

h b r b G
b

1
,

r b
b2

1 1
1

1

( ( ) )( ) ( )∑ ζ αγ
αγ

= = − ≈
−

α γ αγ α γ αγ
α

−

=

∞
− −

−

−

where a( )ζ  is the Riemann zeta function and the right hand side is obtained approxi-
mating the sum by the integral and is valid for 1/α γ>  (where H < ∞α ). The divergence 
of Hα for 1⩽ /α γ appears because the sum/integral diverges for r → ∞ (i.e. for a growing 

number of dierent words). A comparison between Hα in real data and H dp( )
α  is shown 

in figure 2(a). The dierence between the theory and the data for 1c⪅ /α α γ=  is due to 
the finite number of symbols in the database. This is a finite-size eect that depends 
sensitively on the size of the database used to estimate f.

We now focus on the contribution of individual words for Hα. To do that, we take 
advantage of the fact that Hα can be written as a sum over dierent words and consider 
the ratio

R r
f

f
r
r

r

r r

1

1

( )
( )
( )

=
∑
∑

α

α
=

=
∞

′ ′

′ ′
� (5)

as a proxy for the contribution of the first r terms to the computation of Hα. For the 
case of the double power-law distribution f F rr dp( )= , we obtain that

https://doi.org/10.1088/1742-5468/aa53f5
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1 2
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For r  >  b we can approximate the sum rr b

r ′∑ γα
=

−
′  by an integral and obtain

R r
h h

h
b

b r
1

1
.dp

1 2
1

1
1 1( ) ( )( )

( )⎛
⎝
⎜

⎞
⎠
⎟

αγ
≈

+
+

−
−

α γ
αγ αγ

−
− −

� (7)

In figure 2(b) we show the dependence of R and R dp( ) on r for dierent values of α. A 
deviation due to finite-size eects is again observed when 1→ /α γ (finite database size).

The analysis of R reveals a convergence that varies dramatically with α (see also  
[9, 28]), suggesting that for dierent α’s dierent ranges in f contribute to Hα. One 

quantity of interest is the rank rq
∗ so that r rq⩽ ∗ accounts for a fraction q of the eect, 

e.g. for q  =  0.99 we have that R r 0.99q( ) =∗  meaning that the first rq
∗ terms are respon-

sible for 99% of the total fr i∑ α. For small q or large α, such that r bq <∗ , rq
∗ is obtained 

from the first line of equation (6) as the solution of

G q.
rq

=α∗� (8)

For large q or small α, such that r bq >∗ , rq
∗ can be obtained explicitly from  

equation (7) as

r b
b

qh q h
1

1 .q
1

1 2 1

1 1

( ) ( ( ) )( )

/( )
⎜ ⎟
⎛
⎝

⎞
⎠α

αγ
= −

−
− −αγ

α γ

αγ
∗ −

−

−

� (9)

The estimations (8) and (9), which are based on the double power-law distribution 
(1), and the results obtained in the data are shown in figure 2(c). We see that for 1α =  

Figure 2.  Contribution of the r most frequent words to the estimation of the 
generalized entropy αH . Symbols are the results obtained for the data (books 
published in the year 2000). Lines are the theoretical predictions from the double-
power-law distribution (1) with the same number of words as in the data (dashed 
line, finite-size DP) and with infinite support (solid line, obtained analytically). (a) 
αH  as a function of α, solid line corresponds to equation (4); (b) contribution of the 

r most frequent words measured by the ratio ( )αR r  given in equation (5), solid lines 
correspond to equation (6); and (c) the rank r* for which ( )= =α

∗R r r 99%, solid 
line corresponds to equations (8)–(9).
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one typically needs around 200 000 dierent word types in order to obtain 99% of the 
asymptotic value of R. This number quickly decays with α so that for 2α = , the 100 
most frequent words lead to the same relative contribution and therefore all other 
words are irrelevant in practice.

3.2. Divergence Dα

The divergence Dα defined in equation  (3) quantifies how dissimilar two databases 
are (p and q) and the distribution of frequencies in these databases alone does not 
specify Dα. Still, we expect the general shape of Zipf’s law in equation (1) to aect 
the statistical properties of Dα. Here we explore this connection by following steps 
similar to those performed in the previous section for Hα. To do this, it is convenient 

to introduce the relative coordinates f ,i i∆ , where f p q 2i i i( )/= +  and ∆ = −p q 2i i i / , 

such that:

p q fD D f f f D r, ,
1

1

1

2

1

2
.

i
i i i i i

r

( ) ( ) ( ) ( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠∑ ∑α

∆= =
−

− + ∆ − − ∆ ≡α α
α α α

α

�

(10)

This equation emphasizes that Dα is computed as a sum over a contribution D r( )α  of 
dierent words ranked by r. We order the words according to the rank r of the word in 
f, i.e. if a word has rank r ′ it means that there are exactly r 1−′  other words for which 
the average frequency f p q f p q2 2r r r r r r( )/ ( )/= + > = +′ ′ ′ .

The relative contribution r( )R  of the top r words to Dα is given by

r
D r

D

f f f

f f f
,r

r
r
r

r r r r r

r r r r r r

1 1
1

2

1

2

1
1

2

1

2

( )
( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )
=

∑
=

∑ − + ∆ − − ∆

∑ − + ∆ − − ∆

′α

α

α α α

α α α

= =

=
∞

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

R� (11)

which is analogous to equation (5) but in this case D r( )α  is not necessarily monotoni-

cally decaying with r. We finally define r∗q as the rank at which a fraction q of the total 
Dα is achieved, i.e. r( )R =∗ qq .

Figure 3 shows our analysis of the divergence (Dα, r( )R , and r∗q) for two pairs of 
databases (Books2000–Books1900 and Books2000–Physics, see caption of figure 1 for 
details on the data). The left panel shows that the divergence Dα for Books2000–Physics 
is systematically larger than for Books2000–Books1900 suggesting that stylistic and 
topical dierences between books and scientific papers are more significant than his-
torical changes in the language throughout the 20th century. The most striking fea-
ture of figure 3 is the similarity between the results obtained with dierent data (e.g. 
the variation across the databases is much smaller than the variation across α or r). 
Furthermore, the general behavior observed for Dα resembles the results shown in figure 2 
for Hα, which were analytically computed from the word-frequency distribution (1).  
The Dα-observation, however, depends not only on the word frequencies fi but also on 
the variation i∆  across databases. Next we consider two very simplistic models for i∆  
in order to understand these observations.

3.2.1. Constant relative fluctuation.  A simple assumption is that the relative 
fluctuations across databases are the same for each word independent of its frequency, 
in which case ∆ is proportional to the average frequencies f and thus

https://doi.org/10.1088/1742-5468/aa53f5
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f
A.i

i

∆
=� (12)

In this case we obtain from (10) that

D A A f1
1

2
1

1

2
1

1

1 r
r( ) ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠ ∑α= − − − +

−
α

α α α
� (13)

fA A H1
1

2
1

1

2
1

1

1
( ) ( ) ( )⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠α

= − − − + +
−

α α
α� (14)

fA H
1

2

1

1
,2( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠

α α
α

≈
−

+
−

α� (15)

where the approximation is valid for A 1� . Now we notice that f is the word fre-
quency distribution of the combined database and that therefore it should also be well 
approximated by the generalized Zipf’s law (1). Even if this model is too simplistic to 
account for the observed Dα (see dotted line in the left panel of figure 3), it shows how 
the statistical properties of Dα and of Hα can be connected to each other.

3.2.2.  Log-corrected fluctuations.  In order to get some insights on the reason for the 

failure of the previous model, we look at the empirical relative fluctuation 
f

i

i

∆
 for the 

two pairs of databases described above. The results in figure 4 show two features: an 
expected large fluctuation around dierent words and a surprising decay of relative 
fluctuation with fi. The roughly linear decay in the semi-logarithmic plot suggests 
that an improvement of equation (12) is obtained including a logarithmic correction 

Figure 3.  Contribution of the r most frequent words to the estimation of the 
generalized divergence αD . Symbols are the results obtained for the data: books 
published in 1900 versus books published in 2000 (dots) and books published 
in 2000 versus abstracts of Web of Science papers (crosses). Lines are the 
theoretical predictions from the double-power-law distribution (1) with infinite 
support assuming ∆ ∝ fi i, equation (12) (light solid line, model 1), and ∆ ∝ f flogi i i, 
equation (16) (dark solid line, model 2). (a) αD  as a function of α; (b) contribution 
of the r-most frequent words (ranked by the average frequency); and (c) the rank 
r* for which ( )= =α

∗R r r 99%.

https://doi.org/10.1088/1742-5468/aa53f5


Generalized entropies and the similarity of texts

9doi:10.1088/1742-5468/aa53f5

J. S
tat. M

ech. (2017) 014002as f flogi i i/∆ ∝ . Since i∆  is bounded from above by fi (i.e. fi i⩽∆ ) we introduce a lower 
cuto frequency in our log-corrected model
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max max
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1
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/

/⎪
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⎩

∆
=

>
� (16)

where we empirically find that f 1max =  and a  =  −0.05 capture the main qualitative 
behaviour shown in figure 4.

The log-corrected model, obtained combining equation  (16) with the generalized 
Zipf’s law (1), provides a much better account of the results in the three panels of 
figure 3. This shows that the weak dependence of the relative fluctuations on the fre-
quency is crucial in order to understand the results in figure 3.

Figure 4.  Relation between relative ∆ = −p q 2i i i / and average ( )/= +f p q 2i i i  
frequency. Mean and median (conditioned on window in fi) are shown for 
divergences between books published in the year 1900 and 2000 (top panels) and 
books published in 2000 and abstracts from WoS (bottom panels). Shaded region 
correspond to 25- and 75-percentile. Approximations for the conditional mean are 
given by /∆ =f 0.5i i  (dotted line) and /∆ = −f f0.05 logi i i (dashed line).
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4.  Implication of our results

4.1. Keywords in physics

Our results shows that the Zipf’s law is responsible for the general statistical properties 
of both Hα and Dα. One consequence of this result is that the contribution of (a set of) 
particular words is also pre-determined by Zipf’s law and depends largely on the range 
of frequencies of the words. Consider the problem of comparing the divergence between 
the corpus of scientific papers in Physics to a general corpus of books written in English. 
One of the eects one may want to capture when computing Dα is the over-representation 
of Physics-related words in the database of Physics articles, i.e. the fact that p qi i>  for 
words i related to Physics. We denote this set of words as Physics keywords. This is not 
the only eect contributing to the divergence Dα between the texts, e.g. stylistic eects 
aecting the most frequent words (so-called stopwords) may also be relevant. Here we 
wish to quantify the eect of Physics keywords to Dα in comparison to a set of stopwords.

The key insight that connects this problem to our results is that Physics keywords 
are typically distributed in a specific range of frequencies. For instance, we compiled 
a list of 318 Physics keywords from all words appearing in the PACS system (remov-
ing a list of common stop words). As illustrated in the figure 5(left panel) the words 
range from electron—with rank r 100i ≈  and frequency of one every thousand words 

f 10i
3≈ − —to gravitation—with rank r 2000i ≈  and frequency of one every hundred thou-

sand words f 10i
5≈ − . Most Physics keywords lie in between these two frequencies. By 

increasing α from 1 0.56c /α α γ= = ≈  one moves from a configuration in which Dα and 
Hα are dominated by the least frequent words to a configuration in which Dα and Hα are 
determined mostly by the most frequent stopwords (e.g. for 2α> ). Indeed, the results 
in figure 5(right panel) confirm that the contribution of the Physics keywords has a 
maximum around 1.4α≈ . At the maximum, these 318 keywords contribute with more 
than 10% of the total value of Dα. This value is comparable to the contribution of the 
10 most frequent words (stopwords) at the same value of α. The contribution of the 

stopwords quickly increases with α and completely dominates Dα for 2.0⪆α  .

4.2. How large does my database have to be?

When computing Hα and Dα one usually aims at characterizing the properties of the source 
(stochastic process) underlying the data. Stationarity and ergodicity of this process imply 
that computed values should converge for increasing database size. In practice, we are not 
interested in results which depend mainly on the size of the database, and that change 
dramatically with the amount of available data. Below we show how our results allow for 
an estimation of the database size required to provide a reliable estimation of Dα.

The most important eect of changing the database size is to increase the number of 
dierent words found in the databases. This simple observation, the cornerstone of our 

analysis, has two ramifications. First, it implies that a necessary condition for a robust 

estimation of Dα is that r> →
∗

−
M q 1 , i.e. the number of observed dierent words M needs 

to be larger than the number of ranks r needed to estimate a fraction q 1⪅  of Dα. Second, 
a connection to the size of the database N (measured in number of word tokens) is pos-
sible through Heaps’ law, which states that the number of dierent words grows sublin-

ear with the total number of words, M N1/∼ γ [29, 30]. In figure 6 we present the result of 
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this analysis, in which r =
∗
q 0.99 was obtained from the double-power-law distribution with 

log-corrected fluctuations (as in figure 3) and the Heaps’ law relationship derived in [31].

5. Discussion and conclusions

The main message of this paper is that the characteristic shape of word-frequency distri-
butions (fr following Zipf’s law) plays a dominant role in the properties of information-
theoretic measures computed in texts at the level of words. While there is a one-to-one 

Figure 5.  Contribution of subsets of words to the divergence αD . Results are 
shown for a list of 318 physics keywords (see text) and a list of the 10 most 
frequent stopwords (the, of, and, in, to, a, is, for, that, with). (Left) Position of 
keywords and stopwords in the rank-frequency distribution. (Right) Fraction of 
the generalized divergence αD  from words belonging to the list of keywords and the 
list of stopwords as a function of α.

Figure 6.  Database size necessary to observe 99% of αD . The curve for the number 
of dierent words (types) M was computed from r as in figure 3. The relationship 

/∼ γM N1  to the size of the database N (number of tokens) was obtained from a 
Poisson null model assuming a double power-law Zipfian distribution, as in [31]. 
For comparison, the typical book size in Project Gutenberg is ≈N 105, implying 
that αD  between two books can typically be computed only for α> 1.5.

https://doi.org/10.1088/1742-5468/aa53f5
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relationship between fr and entropies Hα—given in equation (4)—here we showed that 
a close connection exists also between fr and measures intended to compare databases 
such as Dα, a result that presumably extends also to other measures such as the mutual 
information and Kullback–Leibler divergence. The influence of fr occurs not only in 
the convergence of finite-size estimators, as reported previously in [9, 28], it aects the 
value of Dα and the weight of the contributions of words in dierent frequency ranges. 
This connection relies not only on the universality of fr but also on our empirical finding 
that, for dierent pairs of databases, the relative fluctuations decay with the logarithm 
of the frequency, see equation (16) and figure 4.

The finding that Zipf’s law directly controls the expected weights of contribution of 
dierent words provides a further motivation for our choice of using generalized entro-
pies Hα. The variation of the free parameter α eectively tunes the range of frequency of 
the words that contribute to Hα and Dα: for large α (e.g. 2α = ) only the most frequent 
words contribute, while for 1α<  the results are dominated by the least frequent words. 
From an example based on 318 keywords in Physics, we obtain that these words con-
tribute with 6% of D 1α= , 10% of D 1.4α= , but only 5% of D 2α= . Words in dierent frequency 
ranges have dierent semantic and syntactic properties so that the variation of α can 
characterize also dierent types of divergencies between the databases.

As α is reduced and approaches (from above) the critical value 1/α γ= , where γ 
is the exponent of Zipf’s law defined in equation  (1), the convergence of Hα and Dα 
becomes extremely slow and increasingly large text sizes are needed for a robust esti-
mation (see figure 6). For instance, for the usual Jensen–Shannon divergence D 1α=  we 
estimate that databases of size  ≈108 tokens (≈200 books or  ≈106 word types) is needed 
while for 0.6α =  the size grows dramatically to the unrealistic number of ≈1020 tokens 
(≈2 1014 books or  ≈1016 word types). For 1 0.56/α γ< ≈  there is no convergence and 
therefore these quantities are not properly defined. This is one of the most dramatic 
consequences of Zipf’s law and reflects the eectively unbounded number of dierent 
symbols (vocabulary) in which Hα is computed.
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