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We use an information-theoretic measure of linguistic similarity
to investigate the organization and evolution of scientific
fields. An analysis of almost 20M papers from the past
three decades reveals that the linguistic similarity is related
but different from experts and citation-based classifications,
leading to an improved view on the organization of science.
A temporal analysis of the similarity of fields shows that
some fields (e.g. computer science) are becoming increasingly
central, but that on average the similarity between pairs of
disciplines has not changed in the last decades. This suggests
that tendencies of convergence (e.g. multi-disciplinarity)
and divergence (e.g. specialization) of disciplines are in
balance.

1. Introduction

The digitization of scientific production opens new possibilities
for quantitative studies on scientometrics and science of
science [1], bringing new insights into questions such as how
knowledge is organized (maps of science) [2-6], how impact
evolves over time (bibliometrics) [7,8], or how to measure the
degree of interdisciplinarity [9,10]. At the heart of these questions
lies the problems of identifying scientific fields and how they
relate to each other. The difficulty of these problems, and
the inadequacy of a purely essentialist approach, were clear
already to Popper [11]: “The belief that there is such a thing as
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physics, or biology, or archaeology, and that these “studies” or “disciplines” are distinguishable by the
subject matter which they investigate, appears to me to be a residue from the time when one believed
that a theory had to proceed from a definition of its own subject matter. But subject matter, or kinds
of things, do not, I hold, constitute a basis for distinguishing disciplines.” [11, pp. 124-125]. Instead, he
argued that disciplines have a cognitive and a social dimension [12], i.e. they “are distinguished partly
for historical reasons and reasons of administrative convenience (such as the organization of teaching
and of appointments), and partly because the theories which we construct to solve our problems have a
tendency to grow into unified systems.” [11, p. 125].

On the one hand, the social dimension of scientific fields can be defined in terms of different
institutions establishing stable recurring patterns of behaviour [13]: producing and reproducing
institutions such as research institutes and universities, communicative institutions such as scientific
societies, journals or conferences, collecting institutions (journals, libraries), as well as directing
institutions (ministries, scientific advisory boards), etc. All these institutions contribute to the formation,
stabilization and reproduction of a discipline as well as its distinction from others. On the other
hand, the cognitive dimension has been specified in [13] as a number of fundamental invariants in
the procedural knowledge, which lead to the categorical construction of scientific knowledge. If this
process causes a change in the cognitive realm for an object of knowledge, it constitutes a certain
discipline.

The brief discussion above is sufficient to show that both the definition and relation between scientific
fields depend on multiple dimensions (e.g. essentialist, social and cognitive). There is no correct or
intrinsically better classification or organization of scientific fields. The consequence of this view to
the problem of identifying relationships between scientific fields from empirical data is that there is
no ground truth against which results (e.g. clusters) can be compared [14]. While previous quantitative
analyses often aimed at obtaining measures which lead to better classification methods [15], the approach
we pursue here is to design methods with a clear interpretation and with known statistical properties in
order to quantify and understand the different aspects captured by different dimensions. This approach
is in line with very recent work in scientometrics [6].

Traditional (expert) classifications are mostly motivated by the ‘subject matters’ under investigation
and can be associated with an essentialist view. The empirical analysis of citation networks, an approach
with a long tradition in scientometrics [16,17], can be regarded as capturing the social dimension (i.e.
collecting institutions in the form of journals). While citations offer valuable insights into the structure
and dynamics of science, they thus reflect only one particular dimension of the relationship between
publications (or scientists) largely ignoring the actual content of the scientific articles. By contrast,
the cognitive dimension can be operationalized with the help of linguistic features (e.g. keywords as
indicators for conceptual imprints of disciplines). The increasing availability of full text of scientific
articles (e.g. of Open Access journals) provides new opportunities to study the latter aspect in the form
of written language. Examples include: (i) the tracking of the spread of ideas [18], individual words
(memes) [19], or scientific concepts [20]; (ii) quantifying differences in the scientific discourse between
subdomains in biomedical literature [21] or “hard” and ‘soft’ science [22]; and (iii) efforts to combine
citation and textual information [2,23-26].

In this work, we advance the idea that the organization and evolution of science should be studied
through different, complementary dimensions. We add a new methodology that provides a meaningful,
language-based, organization of scientific disciplines based on written text. We perform a systematic
analysis how this compares with the organization obtained from experts and citations and, furthermore,
trace the temporal evolution in the relation between different scientific disciplines.

More specifically, we introduce an unsupervised methodology to analyse the text of scientific articles.
Our methodology is based on an information-theoretic dissimilarity measure we proposed recently [27]
(more technically, it is a generalized and normalized Jensen-Shannon divergence between two corpora).
The main advantage of this measure is that it has an absolute meaning (i.e. it is not based on relative
comparisons) and it is statistically more robust than traditional approaches [27,28], e.g. with respect
to the detection of spurious trends owing to rare words and increasing corpus sizes. We measure the
similarity between scientific fields based on ~ 107 abstracts from the last three decades (Web of Science
database). Comparing our language analysis to a citation analysis and an experts classification, we find
that the language and citation are more similar to each other but the language is even more distinct
from the experts than the citation analysis. Following the relation between scientific fields over time, our
language analysis reveals the scientific fields that are becoming more central in science. However, overall
(averaged over all pairs of disciplines) we find that the similarity between the language of different fields
is not increasing.
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2. Dissimilarity of scientific fields

We are interested in the general problem [2,4] of quantifying the relationship between two scientific fields
i,j through the computation of a dissimilarity measure D(j, j), i.e. a quantification of how different i and
j are. Dissimilarity measures are symmetric D(i,j) = D(j, i), non-negative D(i,j) >0 and D(i,i) =0 [29].
Each scientific field is defined by (at least hundreds of) papers classified by Web of Science as belonging
to the same category (see Material and methods §5.1 for details on the data). We consider dissimilarities
computed from the following three different types of information (expert, citation and language).

2.1. Experts

The classification of disciplines by their relationship is as old as science itself. The most used structure is
a strict hierarchical tree, as seen in the traditional departmental division of universities. The collection of
papers used here, provided by ISI Web of Science [30], provides a classification of papers according to the
Organisation for Economic Cooperation and Development (OECD) classification of fields of science and
technology [31]. This scheme is a hierarchical tree with scientific fields defined at three levels (domains,
disciplines and specialities). For instance, Applied Mathematics (a speciality) is part of Mathematics (a
discipline) which is part of Natural Sciences (a domain). The natural dissimilarity measure Dexp(i, )
between two fields in this structure is the number of links needed to reach a common ancestor of i and
j- For instance, considering 7,j at the specialty level, Dexp can assume three different values: Dexp = 1 for
specialties belonging to the same discipline (e.g. Applied Mathematics and Statistics & Probability), Dexp = 2
for specialties belonging to the same domain (e.g. Applied Mathematics and Condensed Matter Physics) and
Dexp =3 for the other pairs of specialties (e.g. Applied Mathematics and Linguistics). While researchers
have pointed out potential issues with classification into categories of ISI Web of Science [4], it offers
the most extensively available classification and remains widely used to relate articles and journals to
disciplines [9,32].

2.2. Citations

Another popular approach is to consider that fields i and j are more similar if there are citations from
(to) papers in i to (from) papers in j [4,16,17]. Here, we consider a dissimilarity measure Dt (7, j) which
decreases for every citation between papers in i and j and increases with every citation from i that is not
to j (and vice versa), but that remains unchanged by the number of citations that do not involve either i
or j. These requirements are achieved using (for i # j) a symmetrized Jaccard-like dissimilarity [29,33]:

1 Ci]--l-C;]- C]-;-I-le-
Deite(i,7) = = ! : : : 2.1
c1te(1/]) 2 (Ci,j T Cij T Cf,j + i n C]*j n lei ’ (2.1)

where c;; are the number of citations from i to j, C b= Zi\]: 1,42b Ca t and Gz = Zg\il#a ct,bl.

2.3. Language

We compare the language of fields 7 and j based on the frequency of words in each field using methods
from information theory. Measuring the frequency p(w) of word w, for each field i we obtain a vector
of frequencies p; =p;(w) for w=1,...,V, where V is the size of the vocabulary (i.e. number of different
words). From this, following [27], the dissimilarity between two fields i and j is

2Hy(p; + l?'j)/2 — H(p;) — HZ(P]‘)
(1/2)(2 — Ha(p;) — HZ(P]')) ’

where Hp(p;)=1- 3, pi(w)* is the generalized entropy of order 2 and the denominator ensures
normalization (i.e. 0 < Djang(i,j) < 1). To increase the discrimination power and to avoid statistical biases
in our estimation, we removed a list of stop words and included only the V =20 000 most frequent words
(see Material and methods §5.3 for a justification). The dissimilarity (2.2) corresponds to a generalized
(and normalized) Jensen—-Shannon divergence which yields statistically robust estimations in texts [27,28]
(for details and motivation, see Material and methods §5.4).

In contrast with most previously proposed methods, equation (2.2) has two critical properties that are
essential in order to obtain the interpretable results mentioned in the Introduction. On the one hand, it

Dlang(irj) = (2.2)

'Each of the two terms in equation (2.1) can be interpreted as a directed Jaccard distance i — j (j — i) in the sense that we divide the
number of edges that are out-links of field i (j) and in-links of field j (i) by the number of edges that are out-links of field i (j) or in-links
of field j (i).
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is well founded in information theory and its statistical properties (in terms of systematic and statistical
errors) are well understood [27,34], distinguishing it from other heuristic approaches. On the other hand,
it has convenient properties: Djang(i,/) depends only on the papers contained in fields i and j and it
is normalized 0 < Diang(i,j) < 1. As a result, the measured distance between two fields, Diang(i, ), has
an absolute meaning. This is in contrast with alternative similarity measures [2,4], including machine-
learning approaches (e.g. topic models [15,35]) based on (un-) supervised classification of documents
into coherent subgroups. Here, the main limitations stem from the fact that either (i) the division into
subgroups is typically based on statistically significant differences in the usage of words between the
different subgroups independent of the actual effect size, or (ii) the resulting distance between two fields
depends also on all other fields (e.g. the distance between ‘Physics” and ‘Chemistry” depends on whether
one includes articles about ‘Anthropology’ in the classification).

3. Results

We now present and interpret results obtained computing the three dissimilarity measures (Dexp, Dcite
and Djapg) reported above for scientific fields i,j defined by papers published in different time intervals
and categorized (by Web of Science) as belonging to the same specialty (e.g. Applied Mathematics),
discipline, (e.g. Mathematics) or domain (e.g. Natural Sciences).

3.1. Comparison of dissimilarity measures

Figure 1 shows the three D(j, j) at the level of specialties (i, j) for the complete time interval 1991-2014. The
concentration of low D(i, j) close to the diagonal shows that both the citations and language of scientific
papers partially reflect the disciplinary classification done by the experts. However, visual inspection
already reveals that citations and our language analysis show relationships not present in the expert
classification, e.g. the low dissimilarity between Engineering and Natural Sciences (most clearly between
Electrical Engineering and Physical Sciences) and between the disciplines inside the Agriculture domain and
Biological Sciences.

We start by quantifying the relationship between the three different dissimilarity measures, i.e.
(Dexp, Dcite and Diang), across all pairs of specialties (i,j). In table 1, we report the rank correlation
between the three measures, which we obtain from ranking for each dissimilarity the pairs of (,)
according to D(i,j). The choice of this non-parametric correlation is motivated by the fact that the
range of the three measures differs dramatically (e.g. Dexp € {0,1,2,3} and Dlang €[0,1]). The positive
statistically significant correlation between all pairs of D(i,j)’s confirms the visual impression described
above. The correlation between citations and language is higher than the correlation with the experts
classification. Remarkably, language and citations show a very similar correlation with experts, but
language is systematically less correlated than citations (p-value=1.8 x 107> for Spearman-p and
p-value =2.2 x 10~° for Kendall-t?). We conclude that the language dissimilarity Djng introduced here
is able to retrieve the well-known relationships between disciplines to a similar extent with that of the
(well-studied) citation analysis.

We now explore how the relationship between the different dimensions depends on the different
scientific fields. The results in figure 2 confirm the conclusions of the aggregated analysis but show
further interesting features. First, the correlation in (Dexp, Dlang) is smaller than (Dexp, Dcite) mainly in the
natural sciences. Second, while the correlation between citations and language remains largely constant,
large fluctuations in the correlations between expert and citations (as well as expert and language) exist.
This is seen both as the strong downward spikes and also in the manifested dependence on disciplines
and domains. The titles of the specialties at the low peaks already suggest that these are specialties
with interdisciplinary connections. For instance, Chemistry, Medicinal is a specialty that (according to
the experts classification) belongs to the discipline Basic Medicine and to the domain Medical Science.
Therefore, Dexp =3 between Chemistry, Medicinal and all specialties of the Natural Sciences (in particular,
for all specialties from the discipline Chemical Sciences). Instead, the dissimilarity measured by citations
Deite and language Djang yields much smaller values revealing the proximity of Chemistry, Medicinal to
the Natural Sciences, thus explaining the low correlation in (Dexp, Dite) and in (Dexp, Diang)- The other
downward spikes seen in the figure can also be understood as a consequence of the central role played
by the Natural Sciences in other disciplines. To confirm this, we computed for a list of selected specialties

2Obtained from 10° bootstrapping samples of each joint distribution P(Dexp, Deite) and P(Dexp, Diang), i-e. comparison of 10° pairs of
correlation values.
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domains disciplines

Computer Sciences

Physical Sciences
natural Chemical Sciences
sciences arth Sciences

experts citations language

Biological Sciences

Electrical Eng.
engineering Materials Eng.
Medical Eng.

Basic Medicine
medical Clinical Medicine
sciences

Health Sciences
Veterinary Science
social Psycliology

Economics and Business

Sociology
Soc. and Econ. Geography

agriculture

sciences

humanities Lang. and Literature
Art;

Figure 1. Dissimilarity between specialties measured in three different dimensions: (a) Deg, based on experts classification [31], where
Drin = 0and Dy = 4; (b) citations dissimilarity Deiee (2.1), where Dy, = 0and Dax = 7.5; () language dissimilarity Djang (2.2), where
Diin = 0and Dyay = 1. N = 225 specialties of the OECD classification scheme are considered. Results based on = 21 M papers from 1991
t0 2014 (see §5.1 for details).
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Figure 2. Correlation between the different dissimilarity measures varies across fields. The Kendall correlation  (x, y) (shown in the
vertical axis) for two measures x and y is computed between D, (i, /) and D (i, j) over all specialties j for a fixed specialty i (shown in
the horizontal axis). The three possible comparisons (x, ) are indicated in the caption. Six specialties (one from each domain) with low
correlation are highlighted.

Table 1.Rank correlation between the dissimilarities Dy(i,j) obtained from different dimensions x € {exp (experts),
cite (citations), lang (language)} computed over all specialty pairs (i, ). (All values are significantly different from zero (p-values
<1077). The two values in each cell denote the Kendall-v and Spearman-p (in parenthesis). Qualitatively equivalent results are
obtained in three different time intervals (indicated in the left row).)

time lang-cite lang-exp cite-exp
all, 1991-2014

i = iSPikes {he pairs (i, j) which suffered the largest change in ranks (comparing Dexp with Dlang), finding
that nine from the top 10 specialties were from the domain Natural Sciences (five of them from the
discipline Chemical sciences, including the top two specialties).
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Figure 3. Hierarchical clusterings at the level of domains (a) and disciplines (b). Results for citations (language) were obtained by
agglomerative hierarchical clustering, applying the group average method [36] to Dgie(/, j) (Diang (i, /). The x-axis shows the clustering
dissimilarity (i.e. the dissimilarity of two clusterings that are merged). The dashed line corresponds to a clustering dissimilarity equal to
the percentile 0.92 of the values of all cluster dissimilarities at each measure (citations/language).

3.2. Hierarchical clustering

A strict hierarchical classification of scientific fields is both aesthetically appealing and of practical use in
bibliographical and document classification tasks. It also allows us to further highlight the differences in
the relationship between scientific fields revealed by the different dissimilarity measures (in particular
by Diang)- While Dexp is precisely based on one such hierarchical classification, Deite and Dyang are not. In
figure 3, we show the hierarchical classifications induced by Deite and Djapg through the computation of
a simple clustering method at the level of domains and disciplines.

At the top level of the six domains (figure 3a), the clustering obtained from citations and from
language are very similar. In particular, both identify Engineering-Natural Sciences and Humanities-Social
Science as clusters that separate from the other domains in a similar fashion. The only difference is that,
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Figure 4. Evolution of the similarity between disciplines in the last three decades. (a) Distance Diang(i, j) between Physical Sciences (i)
and other five selected disciplines (j) (3-year moving averages). (b) Total variation v—defined in equation (3.1)—of the distance for
pairs of disciplines with histories longer than 12 years. Each boxplot corresponds to the distribution of v for pairs of disciplines where we
fixed one of the disciplines. At position (a) we fixed Computer and Information Sciences, at (b) Chemical sciences, at (c) Psychology and at
(d) we used all pairs of disciplines.

Table 2. Contribution of individual words w to the dissimilarity between Physical Sciences (p) and Computer and Information Sciences (c)
in years 1991 (left) and 2014 (right). (The 10 words w that contributed most to Djang in each year are shown. The relative contribution
C is measured as the fraction of the total Djzng owing to word w. It is computed dividing the absolute contribution of word w to
Diang——0btained from equation (2.2) by using the single w in the numerator and all w's in the denominator (the normalization factor) —
by the total Djgnq leading to € = 0.5(p(w) — pp(w))z/(ZHz((pp +p)/2) — Hz(pp) — Hy(p,)). The last column shows the ratio of
frequencies of word w in the two disciplines.)

year =191, 0 (p, ¢) = 0.49 year = 2014, 0™ (p, ) = 0.40

lang lang

p(w)/py(w) WOY(W—Pc(W)/Pp(W)
algorithm

system

based on citations, Agriculture appears more isolated, while based on language this happens for Medical
Science. A more detailed picture of the differences between language and citation is revealed at the level
of disciplines (figure 3b). While at the first division, both citations and language create a cluster in which
all disciplines of the domains Humanities and Social Sciences appear, further divisions show more subtle
differences between the two dissimilarity measures.

Remarkably, the hierarchy obtained from language creates a cluster containing all and only Humanities
disciplines. By contrast, the hierarchy based on citations creates one clustering with three of the five
Humanities disciplines (Lang. and Literature, Arts and Other Humanities while the two remaining ones
(History & Archaeology and Philosophy, ethics, religion) are clustered together in the middle of a cluster of
disciplines in Social Science. Another interesting difference between the clusterings is revealed looking
at three disciplines of the domain Medicine: In the analysis based on citations, the minimum cluster
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that includes the three disciplines includes Biological Sciences and Other Natural Sciences, while in the
language analysis, this cluster includes additionally three related Engineering disciplines (Medical Eng.,
Ind. Biotechnology and Environ. Biotechnology).

Probably the most remarkable feature of the clustering obtained by, both, citations and language is that
it repeatedly clusters together related disciplines from Natural Sciences with disciplines from Engineering
and Medicine (e.g. Chemical Sciences and Materials Science). This clustering, not present in the experts
classification, suggests that the distinction between fundamental and applied sciences present in the
expert classification has no strong effect on citations and the language of the publications. Instead, in
this specific case, the citation and language analysis seem to be capturing a connection between ‘subject
matters’ that was necessarily absent from the strict hierarchical expert classification.

3.3. Temporal evolution

While in the previous sections we looked at a static snapshot of the relation between disciplines, here
we are interested in how the linguistic relationship Diang(i, /) between pairs (i, /) of disciplines evolved
over the last three decades. In figure 4, we show the temporal evolution for five out of 703 pairs (i, ),
with focus on the discipline Physical Sciences, illustrating different types of dynamic patterns. On the one
hand, the dissimilarity to Chemical Sciences (its most similar discipline) and Mathematics stays roughly
constant over time. On the other hand, we also observe systematic trends of disciplines becoming more
or less similar over time. While the proximity to Biological Sciences and Computer and Information Science
has steadily increased (decreased dissimilarity Diang (i, /)) after the year 2000, the opposite trend is seen for
Electrical, Electronical and Information Engineering. These observations are consistent with the increasing
number of biological and computational-related publications in Physics, and with a departure from the
historical connections to Engineering.

The observations reported above raise the question as to whether scientific disciplines are showing
an overall tendency to become more similar to each other. In a more general context, this amounts to the
question of whether the purported increase in interdisciplinarity leads to a larger overlap in the language
used by different disciplines. We address this question by computing, for each pair of disciplines, the
mean yearly variation

Vi) =5 0 Dyl ~ D (3.1)
teAt
= DD~ D)), (32)

where the time interval At = tp — to was usually from t) =1991 to tp =2014. The distribution of values of
v for all discipline pairs (i, j) is shown at the (rightmost) box plot in figure 4b. We see that there are both
positive and negative variations, consistent with our qualitative observations in the example of Physical
Sciences in figure 4a. However, the average variation (v) ~ —0.00025 over all pairs of disciplines (7, ) is not
distinguishable from zero (the null hypothesis of (v) =0 has a p-value =0.07 in the t-test for the mean
of one sample and a p-value =0.21 in the non-parametric Wilcoxon test), i.e. the typical dissimilarity
remains unchanged. This result suggests that, while there are systematic trends for individual pairs of
disciplines, on average there is no significant increase or decrease in the interdisciplinarity for the science
as a whole in the last three decades as measured by the language.

On a more fine-grained level, however, we observe systematic trends that suggest that individual
disciplines tend to become more (less) central. For this, we focus on the discipline pairs (i,j) which
experienced the most extreme variation in the last decade (one standard deviation away from (v)). These
pairs have typically |v| £ 0.003, meaning that their (normalized) dissimilarity changes roughly 3% in
a decade. The three disciplines that are most frequently seen in the left tail (v <0) are: 1-02 Computer
and Information Sciences, 2-08 Environmental Biotechnology and 3-01 Basic Medicine. The language of these
disciplines became significantly more similar to the language of other disciplines in the last three decades,
suggesting that these disciplines became more central. By contrast, the three disciplines that experienced
most strongly the opposite effect (most frequently seen in the right tail, v > 0) are (in decreasing order):
5-01 Psychology, 2-05 Materials Engineering and 2-02 Electrical Engineering, Electronic Engineering,
Information Engineering.

In the interpretation of the results reported in this section it is crucial to take into account that the
measure Djang We use depends only on the frequency of the words in each of the fields and in each year.

3We work at the level of disciplines because most specialities fail to have enough publications in a single year.
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In particular, this means that the results can be interpreted as an absolute dissimilarity independent of
the content or volume of other fields. Another advantage of our measure Dy, is that it allows us to
quantify the contribution of individual words [28]. This general feature of our method is illustrated in
table 2 and allows for a deeper interpretation of the meaning of Diang (e.g. the contribution of topical
words and stylistic differences).

4. Discussion

We investigated the similarity between scientific fields from different perspectives: an expert
classification, a citation analysis and a newly proposed measure of linguistic similarity. We found that
these different dimensions are related yet different, yielding thus new insights on the relationship
between disciplines, their hierarchical organization and their temporal evolution.

Our first main finding is that the language and citation relationships between disciplines are similar
and substantially different from the expert classification. This is consistent with the motivation exposed
in our introduction which associated the expert classification to the (largely idealized) essentialist view
of scientific disciplines, while the citation (social) and language (cognitive) were closer to dimensions
that play a more important role in the relationship between fields. Interestingly, our results indicate that
the language-relation of fields is more distinct from the expert classification than the citation-relation is,
especially in the natural sciences.

Our second main finding is that in the last 30 years the language of different scientific fields remain,
on average, at the same distance from all other fields. While individual disciplines show clear trends
of increasing (or decreasing) centrality, this suggests that, overall, diverging tendencies in science (e.g.
specialization) are in balance with converging tendencies (e.g. multidisciplinarism). This is a remarkable
quantitative finding because of the substantial changes observed in this period.

The latter result demonstrates that our textual measure is of practical relevance for the study of
interdisciplinarity. In recent years, interdisciplinary research achieved a central position [10] due to its
broader relation to the concept of diversity [37] and its effect on the impact [38,39] and performance of
teams [40] as well as its implications for policymaking, e.g. in terms of funding [41]. Is it just a fashion
or science is really getting more and more interdisciplinary? A usual way to assess interdisciplinarity
is based on citation networks using heuristic approaches [9,32,42] or methods from complex networks
[43—-46]. In line with the arguments exposed in the introduction, interdisciplinarity can be viewed through
different dimensions and the cognitive dimension would be best measured using textual data. However,
there are only very few works [47—49] relating textual measures with interdisciplinarity, despite the
increasing availability of the text of scientific articles. In this view, the significance of our approach is
that it provides a measure of interdisciplinarity based on how much the usage of words in different
disciplines overlap.

Finally, we hope our results and methodology will stimulate a multiple-dimensional approach in
other problems related to the study of sciences, profiting from the modern availability of large (textual)
databases of scientific publications that allow us to go beyond traditional bibliometric analysis [1,9].
These include, but are not limited to, the formulation of more meaningful bibliometric indicators [50],
the identification and prediction of influential papers and disciplines [51-53], or the inclusion of textual
information in recommending related scientific papers [54].

5. Material and methods

5.1. Data and grouping of corpora

We use the Web of Science database [30] and explore the following information available for individual
articles: citations, title, abstract and the classification in one scientific speciality (per OECD classification
[31]). We use all papers published between 1991 and 2014 because, the number of articles with text in
the abstract is substantial only after 1991 and because, at the time we started our analysis, 2014 was the
last complete year available to us. The text of an article was built concatenating its title and abstract.
The corpus representing a speciality in a given year is obtained from the concatenation of the text of all
articles for that specialty in that year. The corpus for one discipline (or domain) concatenates all articles
in all specialities belonging to that discipline (or domain).

Our analysis is based on 19589166 articles for each of the textual and classification information
were available (92% of all articles indexed in Web of Science during 1991-2014). In our analysis we
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considered only citations from and to the papers in our list because only for these papers we had a n
reliable classification of specialties. These citations corresponded to roughly half of the ~625M citations
associated with these papers. See [55] for the divergences we obtained from this dataset.

5.2. Data processing

For each article in our database, we performed the following steps to process the textual information:

(i) the abstracts written in a language different from English were excluded;
(ii) the copyright information contained in the abstract was removed;
(iii) title and abstract were concatenated;
(iv) the text was converted to lowercase;
(v) contractions were replaced by their non-contracted form, exact list and details are available
in [55];
(vi) the text was tokenized, and the nouns and verbs were lemmatized using the Natural Language
Toolkit [56] for English;
(vii) non-alphanumeric symbols (except hyphen) inside tokens were replaced by white space,
therefore generating two or more distinct tokens;
(viii) tokens composed exclusively by numbers or single letter were removed; and
(ix) tokens belonging to a preset stop-word list were discarded; exact list and details available in [55].
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5.3. Minimum corpus size

We computed Diang using only the 20000 most frequent word types, disregarding the scientific fields
for which there were not enough data to achieve this cut-off. This is necessary in order to ensure that
the estimations of Djapg are reliable. The crucial problem is the slow convergence of entropy estimations
(and thus Diang) which leads to strong uncertainties in entropy estimations even for large corpora [27].
By choosing a fixed number of word types, we reduce the effect of the remaining bias (in the estimation
of Diang) on our comparative analysis of textual dissimilarity between pairs of fields. This happens
because the residual bias acts as an offset in all cases (when a fixed cut-off is chosen) instead of affecting
differently each case (as obtained if the maximum amount of data is used in each case). The bias
decays with the number of word types used because the more frequent types are responsible for almost
all the dissimilarity, specially for o =2 [28]. Using 10000 types as a cut-off, we estimated the textual
dissimilarity relative standard deviation, computed over multiple samples of the same scientific field, to
be 6 (Diang)/Diang & 1%. Our choice for a larger cut-off of 20000 types is a conservative choice to ensure
a smaller uncertainty of the estimations, i.e. 6 (Dijang)/Dlang < 1%.

5.4. Generalized Jensen—Shannon divergence

Given two texts (indexed by p and g), we define the probability distributions over all word types w =
1,...,V as p=(pw) and q =(gw). An information-theoretic measure to quantify their similarity is the
generalized Jensen—-Shannon divergence:

1 1
Dutp ) =Ha (P19) - SHu) - 5Huta), 61

based on the generalized entropy of order « (€ R), where

Hop)= <Z - 1) - (52)

w

Here, we consider a normalized similarity [27]

Dq(p,q)
Dy*(p, q)

such that D, €[0,1], where D™(p,q) = (2% — 1)/2)(Hy(p) + Ha(q) +2/(1 — @)) is the maximum
possible D, between p and q, assuming that the set of symbols in each distribution (i.e. the support
of p and q) are disjoint. In other words, if the two corpora have no common word, Dy = 1.

Note that, for « =1, equation (5.2) yields the Shannon entropy [57], i.e. Hy=1(p) = — >, Pw 10g pw, and
Dy=1 is the well-known Jensen-Shannon divergence [58]. Gerlach et al. [27] shows that « =2 provides
the most robust statistical measure of similarity of texts. This motivates our choice of Diang = Dyes.

Du(p,q) = (5.3)
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